Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubdrglem Structured version   Visualization version   GIF version

Theorem cnsubdrglem 20019
 Description: Lemma for resubdrg 20176 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
cnsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnsubglem.2 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
cnsubglem.3 (𝑥𝐴 → -𝑥𝐴)
cnsubrglem.4 1 ∈ 𝐴
cnsubrglem.5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
cnsubrglem.6 ((𝑥𝐴𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴)
Assertion
Ref Expression
cnsubdrglem (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐴) ∈ DivRing)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnsubdrglem
StepHypRef Expression
1 cnsubglem.1 . . 3 (𝑥𝐴𝑥 ∈ ℂ)
2 cnsubglem.2 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3 cnsubglem.3 . . 3 (𝑥𝐴 → -𝑥𝐴)
4 cnsubrglem.4 . . 3 1 ∈ 𝐴
5 cnsubrglem.5 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
61, 2, 3, 4, 5cnsubrglem 20018 . 2 𝐴 ∈ (SubRing‘ℂfld)
7 cndrng 19997 . . . 4 fld ∈ DivRing
8 eqid 2760 . . . . 5 (ℂflds 𝐴) = (ℂflds 𝐴)
9 cnfld0 19992 . . . . 5 0 = (0g‘ℂfld)
10 eqid 2760 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
118, 9, 10issubdrg 19027 . . . 4 ((ℂfld ∈ DivRing ∧ 𝐴 ∈ (SubRing‘ℂfld)) → ((ℂflds 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴))
127, 6, 11mp2an 710 . . 3 ((ℂflds 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴)
13 cnring 19990 . . . . 5 fld ∈ Ring
141ssriv 3748 . . . . . . 7 𝐴 ⊆ ℂ
15 ssdif 3888 . . . . . . 7 (𝐴 ⊆ ℂ → (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0}))
1614, 15ax-mp 5 . . . . . 6 (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0})
1716sseli 3740 . . . . 5 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0}))
18 cnfldbas 19972 . . . . . 6 ℂ = (Base‘ℂfld)
1918, 9, 7drngui 18975 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
20 cnflddiv 19998 . . . . . 6 / = (/r‘ℂfld)
21 cnfld1 19993 . . . . . 6 1 = (1r‘ℂfld)
2218, 19, 20, 21, 10ringinvdv 18914 . . . . 5 ((ℂfld ∈ Ring ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
2313, 17, 22sylancr 698 . . . 4 (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
24 eldifsn 4462 . . . . 5 (𝑥 ∈ (𝐴 ∖ {0}) ↔ (𝑥𝐴𝑥 ≠ 0))
25 cnsubrglem.6 . . . . 5 ((𝑥𝐴𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴)
2624, 25sylbi 207 . . . 4 (𝑥 ∈ (𝐴 ∖ {0}) → (1 / 𝑥) ∈ 𝐴)
2723, 26eqeltrd 2839 . . 3 (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
2812, 27mprgbir 3065 . 2 (ℂflds 𝐴) ∈ DivRing
296, 28pm3.2i 470 1 (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐴) ∈ DivRing)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050   ∖ cdif 3712   ⊆ wss 3715  {csn 4321  ‘cfv 6049  (class class class)co 6814  ℂcc 10146  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  -cneg 10479   / cdiv 10896   ↾s cress 16080  Ringcrg 18767  invrcinvr 18891  DivRingcdr 18969  SubRingcsubrg 18998  ℂfldccnfld 19968 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-addf 10227  ax-mulf 10228 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-subg 17812  df-cmn 18415  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-drng 18971  df-subrg 19000  df-cnfld 19969 This theorem is referenced by:  qsubdrg  20020  resubdrg  20176
 Copyright terms: Public domain W3C validator