MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnss1 Structured version   Visualization version   GIF version

Theorem cnss1 21301
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1 𝑋 = 𝐽
Assertion
Ref Expression
cnss1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))

Proof of Theorem cnss1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6 𝑋 = 𝐽
2 eqid 2771 . . . . . 6 𝐿 = 𝐿
31, 2cnf 21271 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋 𝐿)
43adantl 467 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋 𝐿)
5 simpllr 760 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐽𝐾)
6 cnima 21290 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
76adantll 693 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
85, 7sseldd 3753 . . . . 5 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐾)
98ralrimiva 3115 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)
10 simpll 750 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋))
11 cntop2 21266 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
1211adantl 467 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top)
132toptopon 20942 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1412, 13sylib 208 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘ 𝐿))
15 iscn 21260 . . . . 5 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
1610, 14, 15syl2anc 573 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
174, 9, 16mpbir2and 692 . . 3 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿))
1817ex 397 . 2 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿)))
1918ssrdv 3758 1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wss 3723   cuni 4575  ccnv 5249  cima 5253  wf 6026  cfv 6030  (class class class)co 6796  Topctop 20918  TopOnctopon 20935   Cn ccn 21249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-map 8015  df-top 20919  df-topon 20936  df-cn 21252
This theorem is referenced by:  kgen2cn  21583  xkopjcn  21680
  Copyright terms: Public domain W3C validator