![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnso | Structured version Visualization version GIF version |
Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
cnso | ⊢ ∃𝑥 𝑥 Or ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 10156 | . . . 4 ⊢ < Or ℝ | |
2 | eqid 2651 | . . . . . 6 ⊢ {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} = {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} | |
3 | f1oiso 6641 | . . . . . 6 ⊢ ((𝑎:ℝ–1-1-onto→ℂ ∧ {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} = {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)}) → 𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ)) | |
4 | 2, 3 | mpan2 707 | . . . . 5 ⊢ (𝑎:ℝ–1-1-onto→ℂ → 𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ)) |
5 | isoso 6638 | . . . . . 6 ⊢ (𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ)) | |
6 | soinxp 5217 | . . . . . 6 ⊢ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ) | |
7 | 5, 6 | syl6bb 276 | . . . . 5 ⊢ (𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ( < Or ℝ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) |
9 | 1, 8 | mpbii 223 | . . 3 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ) |
10 | cnex 10055 | . . . . . 6 ⊢ ℂ ∈ V | |
11 | 10, 10 | xpex 7004 | . . . . 5 ⊢ (ℂ × ℂ) ∈ V |
12 | 11 | inex2 4833 | . . . 4 ⊢ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) ∈ V |
13 | soeq1 5083 | . . . 4 ⊢ (𝑥 = ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) → (𝑥 Or ℂ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) | |
14 | 12, 13 | spcev 3331 | . . 3 ⊢ (({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ → ∃𝑥 𝑥 Or ℂ) |
15 | 9, 14 | syl 17 | . 2 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ∃𝑥 𝑥 Or ℂ) |
16 | rpnnen 15000 | . . . 4 ⊢ ℝ ≈ 𝒫 ℕ | |
17 | cpnnen 15002 | . . . 4 ⊢ ℂ ≈ 𝒫 ℕ | |
18 | 16, 17 | entr4i 8054 | . . 3 ⊢ ℝ ≈ ℂ |
19 | bren 8006 | . . 3 ⊢ (ℝ ≈ ℂ ↔ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ) | |
20 | 18, 19 | mpbi 220 | . 2 ⊢ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ |
21 | 15, 20 | exlimiiv 1899 | 1 ⊢ ∃𝑥 𝑥 Or ℂ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∃wex 1744 ∃wrex 2942 ∩ cin 3606 𝒫 cpw 4191 class class class wbr 4685 {copab 4745 Or wor 5063 × cxp 5141 –1-1-onto→wf1o 5925 ‘cfv 5926 Isom wiso 5927 ≈ cen 7994 ℂcc 9972 ℝcr 9973 < clt 10112 ℕcn 11058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-omul 7610 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-limsup 14246 df-clim 14263 df-rlim 14264 df-sum 14461 |
This theorem is referenced by: aannenlem3 24130 |
Copyright terms: Public domain | W3C validator |