Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnso Structured version   Visualization version   GIF version

Theorem cnso 15020
 Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
cnso 𝑥 𝑥 Or ℂ

Proof of Theorem cnso
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltso 10156 . . . 4 < Or ℝ
2 eqid 2651 . . . . . 6 {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)}
3 f1oiso 6641 . . . . . 6 ((𝑎:ℝ–1-1-onto→ℂ ∧ {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)}) → 𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ))
42, 3mpan2 707 . . . . 5 (𝑎:ℝ–1-1-onto→ℂ → 𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ))
5 isoso 6638 . . . . . 6 (𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ))
6 soinxp 5217 . . . . . 6 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)
75, 6syl6bb 276 . . . . 5 (𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ))
84, 7syl 17 . . . 4 (𝑎:ℝ–1-1-onto→ℂ → ( < Or ℝ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ))
91, 8mpbii 223 . . 3 (𝑎:ℝ–1-1-onto→ℂ → ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)
10 cnex 10055 . . . . . 6 ℂ ∈ V
1110, 10xpex 7004 . . . . 5 (ℂ × ℂ) ∈ V
1211inex2 4833 . . . 4 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) ∈ V
13 soeq1 5083 . . . 4 (𝑥 = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) → (𝑥 Or ℂ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ))
1412, 13spcev 3331 . . 3 (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ → ∃𝑥 𝑥 Or ℂ)
159, 14syl 17 . 2 (𝑎:ℝ–1-1-onto→ℂ → ∃𝑥 𝑥 Or ℂ)
16 rpnnen 15000 . . . 4 ℝ ≈ 𝒫 ℕ
17 cpnnen 15002 . . . 4 ℂ ≈ 𝒫 ℕ
1816, 17entr4i 8054 . . 3 ℝ ≈ ℂ
19 bren 8006 . . 3 (ℝ ≈ ℂ ↔ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ)
2018, 19mpbi 220 . 2 𝑎 𝑎:ℝ–1-1-onto→ℂ
2115, 20exlimiiv 1899 1 𝑥 𝑥 Or ℂ
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   = wceq 1523  ∃wex 1744  ∃wrex 2942   ∩ cin 3606  𝒫 cpw 4191   class class class wbr 4685  {copab 4745   Or wor 5063   × cxp 5141  –1-1-onto→wf1o 5925  ‘cfv 5926   Isom wiso 5927   ≈ cen 7994  ℂcc 9972  ℝcr 9973   < clt 10112  ℕcn 11058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461 This theorem is referenced by:  aannenlem3  24130
 Copyright terms: Public domain W3C validator