![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrrext | Structured version Visualization version GIF version |
Description: The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
cnrrext | ⊢ ℂfld ∈ ℝExt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnnrg 22706 | . . 3 ⊢ ℂfld ∈ NrmRing | |
2 | cndrng 19898 | . . 3 ⊢ ℂfld ∈ DivRing | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) |
4 | cnzh 30244 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmMod | |
5 | df-refld 20074 | . . . . 5 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
6 | 5 | fveq2i 6307 | . . . 4 ⊢ (chr‘ℝfld) = (chr‘(ℂfld ↾s ℝ)) |
7 | reofld 30070 | . . . . 5 ⊢ ℝfld ∈ oField | |
8 | ofldchr 30044 | . . . . 5 ⊢ (ℝfld ∈ oField → (chr‘ℝfld) = 0) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (chr‘ℝfld) = 0 |
10 | resubdrg 20077 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
11 | 10 | simpli 476 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
12 | subrgchr 30024 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) → (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld)) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld) |
14 | 6, 9, 13 | 3eqtr3ri 2755 | . . 3 ⊢ (chr‘ℂfld) = 0 |
15 | 4, 14 | pm3.2i 470 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) |
16 | cnfldcusp 23274 | . . 3 ⊢ ℂfld ∈ CUnifSp | |
17 | eqid 2724 | . . . 4 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
18 | 17 | cnflduss 23273 | . . 3 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
19 | 16, 18 | pm3.2i 470 | . 2 ⊢ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))) |
20 | cnfldbas 19873 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
21 | cnmet 22697 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
22 | metf 22257 | . . . . . 6 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
23 | ffn 6158 | . . . . . 6 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
24 | 21, 22, 23 | mp2b 10 | . . . . 5 ⊢ (abs ∘ − ) Fn (ℂ × ℂ) |
25 | fnresdm 6113 | . . . . 5 ⊢ ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )) | |
26 | 24, 25 | ax-mp 5 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ) |
27 | cnfldds 19879 | . . . . 5 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
28 | 27 | reseq1i 5499 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
29 | 26, 28 | eqtr3i 2748 | . . 3 ⊢ (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
30 | eqid 2724 | . . 3 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
31 | 20, 29, 30 | isrrext 30274 | . 2 ⊢ (ℂfld ∈ ℝExt ↔ ((ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) ∧ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) ∧ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))))) |
32 | 3, 15, 19, 31 | mpbir3an 1381 | 1 ⊢ ℂfld ∈ ℝExt |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1596 ∈ wcel 2103 × cxp 5216 ↾ cres 5220 ∘ ccom 5222 Fn wfn 5996 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 ℂcc 10047 ℝcr 10048 0cc0 10049 − cmin 10379 abscabs 14094 ↾s cress 15981 distcds 16073 DivRingcdr 18870 SubRingcsubrg 18899 Metcme 19855 metUnifcmetu 19860 ℂfldccnfld 19869 ℤModczlm 19972 chrcchr 19973 ℝfldcrefld 20073 UnifStcuss 22179 CUnifSpccusp 22223 NrmRingcnrg 22506 NrmModcnlm 22507 oFieldcofld 30026 ℝExt crrext 30268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-addf 10128 ax-mulf 10129 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-tpos 7472 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-2o 7681 df-oadd 7684 df-er 7862 df-map 7976 df-ixp 8026 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-fi 8433 df-sup 8464 df-inf 8465 df-oi 8531 df-card 8878 df-cda 9103 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-q 11903 df-rp 11947 df-xneg 12060 df-xadd 12061 df-xmul 12062 df-ioo 12293 df-ico 12295 df-icc 12296 df-fz 12441 df-fzo 12581 df-seq 12917 df-exp 12976 df-hash 13233 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-starv 16079 df-sca 16080 df-vsca 16081 df-ip 16082 df-tset 16083 df-ple 16084 df-ds 16087 df-unif 16088 df-hom 16089 df-cco 16090 df-rest 16206 df-topn 16207 df-0g 16225 df-gsum 16226 df-topgen 16227 df-pt 16228 df-prds 16231 df-xrs 16285 df-qtop 16290 df-imas 16291 df-xps 16293 df-mre 16369 df-mrc 16370 df-acs 16372 df-preset 17050 df-poset 17068 df-plt 17080 df-toset 17156 df-ps 17322 df-tsr 17323 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-submnd 17458 df-grp 17547 df-minusg 17548 df-sbg 17549 df-mulg 17663 df-subg 17713 df-cntz 17871 df-od 18069 df-cmn 18316 df-abl 18317 df-mgp 18611 df-ur 18623 df-ring 18670 df-cring 18671 df-oppr 18744 df-dvdsr 18762 df-unit 18763 df-invr 18793 df-dvr 18804 df-drng 18872 df-field 18873 df-subrg 18901 df-abv 18940 df-lmod 18988 df-psmet 19861 df-xmet 19862 df-met 19863 df-bl 19864 df-mopn 19865 df-fbas 19866 df-fg 19867 df-metu 19868 df-cnfld 19870 df-zring 19942 df-zlm 19976 df-chr 19977 df-refld 20074 df-top 20822 df-topon 20839 df-topsp 20860 df-bases 20873 df-cld 20946 df-ntr 20947 df-cls 20948 df-nei 21025 df-cn 21154 df-cnp 21155 df-haus 21242 df-cmp 21313 df-tx 21488 df-hmeo 21681 df-fil 21772 df-flim 21865 df-fcls 21867 df-ust 22126 df-utop 22157 df-uss 22182 df-usp 22183 df-cfilu 22213 df-cusp 22224 df-xms 22247 df-ms 22248 df-tms 22249 df-nm 22509 df-ngp 22510 df-nrg 22512 df-nlm 22513 df-cncf 22803 df-cfil 23174 df-cmet 23176 df-cms 23253 df-omnd 29929 df-ogrp 29930 df-orng 30027 df-ofld 30028 df-rrext 30273 |
This theorem is referenced by: sitgclcn 30636 |
Copyright terms: Public domain | W3C validator |