MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrest2r Structured version   Visualization version   GIF version

Theorem cnrest2r 21314
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
cnrest2r (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))

Proof of Theorem cnrest2r
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)))
2 cntop2 21268 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → (𝐾t 𝐵) ∈ Top)
32adantl 473 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) ∈ Top)
4 restrcl 21184 . . . . . . 7 ((𝐾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V))
5 eqid 2761 . . . . . . . 8 𝐾 = 𝐾
65restin 21193 . . . . . . 7 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
73, 4, 63syl 18 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
87oveq2d 6831 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐽 Cn (𝐾t 𝐵)) = (𝐽 Cn (𝐾t (𝐵 𝐾))))
91, 8eleqtrd 2842 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾))))
10 simpl 474 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ Top)
115toptopon 20945 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1210, 11sylib 208 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ (TopOn‘ 𝐾))
13 cntop1 21267 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝐽 ∈ Top)
1413adantl 473 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ Top)
15 eqid 2761 . . . . . . . . 9 𝐽 = 𝐽
1615toptopon 20945 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1714, 16sylib 208 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ (TopOn‘ 𝐽))
18 inss2 3978 . . . . . . . 8 (𝐵 𝐾) ⊆ 𝐾
19 resttopon 21188 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
2012, 18, 19sylancl 697 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
21 cnf2 21276 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))) → 𝑓: 𝐽⟶(𝐵 𝐾))
2217, 20, 9, 21syl3anc 1477 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓: 𝐽⟶(𝐵 𝐾))
23 frn 6215 . . . . . 6 (𝑓: 𝐽⟶(𝐵 𝐾) → ran 𝑓 ⊆ (𝐵 𝐾))
2422, 23syl 17 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → ran 𝑓 ⊆ (𝐵 𝐾))
2518a1i 11 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐵 𝐾) ⊆ 𝐾)
26 cnrest2 21313 . . . . 5 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝑓 ⊆ (𝐵 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
2712, 24, 25, 26syl3anc 1477 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
289, 27mpbird 247 . . 3 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾))
2928ex 449 . 2 (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾)))
3029ssrdv 3751 1 (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  Vcvv 3341  cin 3715  wss 3716   cuni 4589  ran crn 5268  wf 6046  cfv 6050  (class class class)co 6815  t crest 16304  Topctop 20921  TopOnctopon 20938   Cn ccn 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-oadd 7735  df-er 7914  df-map 8028  df-en 8125  df-fin 8128  df-fi 8485  df-rest 16306  df-topgen 16327  df-top 20922  df-topon 20939  df-bases 20973  df-cn 21254
This theorem is referenced by:  invrcn  22206  metdcn  22865  ngnmcncn  22870  metdscn2  22882  icchmeo  22962  cnrehmeo  22974  evth  22980  reparphti  23018  nmcnc  27882  connpconn  31546  cvxsconn  31554  cvmliftlem8  31603  cvmlift2lem9a  31614  cvmlift3lem6  31635  knoppcnlem10  32820  broucube  33775
  Copyright terms: Public domain W3C validator