Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnres2 Structured version   Visualization version   GIF version

Theorem cnres2 33887
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
cnres2.1 𝑋 = 𝐽
cnres2.2 𝑌 = 𝐾
Assertion
Ref Expression
cnres2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cnres2
StepHypRef Expression
1 simp3l 1242 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 simp2l 1240 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐴𝑋)
3 cnres2.1 . . . 4 𝑋 = 𝐽
43cnrest 21309 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
51, 2, 4syl2anc 565 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
6 simp1r 1239 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐾 ∈ Top)
7 cnres2.2 . . . . 5 𝑌 = 𝐾
87toptopon 20941 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
96, 8sylib 208 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐾 ∈ (TopOn‘𝑌))
10 df-ima 5262 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
11 simp3r 1243 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
123, 7cnf 21270 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
13 ffun 6188 . . . . . . 7 (𝐹:𝑋𝑌 → Fun 𝐹)
141, 12, 133syl 18 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → Fun 𝐹)
15 fdm 6191 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
161, 12, 153syl 18 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → dom 𝐹 = 𝑋)
172, 16sseqtr4d 3789 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐴 ⊆ dom 𝐹)
18 funimass4 6389 . . . . . 6 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
1914, 17, 18syl2anc 565 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2011, 19mpbird 247 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ⊆ 𝐵)
2110, 20syl5eqssr 3797 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ran (𝐹𝐴) ⊆ 𝐵)
22 simp2r 1241 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐵𝑌)
23 cnrest2 21310 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran (𝐹𝐴) ⊆ 𝐵𝐵𝑌) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵))))
249, 21, 22, 23syl3anc 1475 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵))))
255, 24mpbid 222 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060  wss 3721   cuni 4572  dom cdm 5249  ran crn 5250  cres 5251  cima 5252  Fun wfun 6025  wf 6027  cfv 6031  (class class class)co 6792  t crest 16288  Topctop 20917  TopOnctopon 20934   Cn ccn 21248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-fin 8112  df-fi 8472  df-rest 16290  df-topgen 16311  df-top 20918  df-topon 20935  df-bases 20970  df-cn 21251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator