![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrefiisp | Structured version Visualization version GIF version |
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
cnrefiisp.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cnrefiisp.n | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
cnrefiisp.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
cnrefiisp.c | ⊢ 𝐶 = (ℝ ∪ 𝐵) |
Ref | Expression |
---|---|
cnrefiisp | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrefiisp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | cnrefiisp.n | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
3 | cnrefiisp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
4 | cnrefiisp.c | . . 3 ⊢ 𝐶 = (ℝ ∪ 𝐵) | |
5 | eqid 2771 | . . 3 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) | |
6 | fvoveq1 6816 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (abs‘(𝑧 − 𝐴)) = (abs‘(𝑤 − 𝐴))) | |
7 | 6 | sneqd 4328 | . . . . . 6 ⊢ (𝑧 = 𝑤 → {(abs‘(𝑧 − 𝐴))} = {(abs‘(𝑤 − 𝐴))}) |
8 | 7 | cbviunv 4693 | . . . . 5 ⊢ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))} = ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))} |
9 | 8 | uneq2i 3915 | . . . 4 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) |
10 | 9 | infeq1i 8540 | . . 3 ⊢ inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}), ℝ*, < ) |
11 | 1, 2, 3, 4, 5, 10 | cnrefiisplem 40573 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴)))) |
12 | eleq1w 2833 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ)) | |
13 | neeq1 3005 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ≠ 𝐴 ↔ 𝑦 ≠ 𝐴)) | |
14 | 12, 13 | anbi12d 616 | . . . . 5 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴))) |
15 | fvoveq1 6816 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (abs‘(𝑤 − 𝐴)) = (abs‘(𝑦 − 𝐴))) | |
16 | 15 | breq2d 4798 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤 − 𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
17 | 14, 16 | imbi12d 333 | . . . 4 ⊢ (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴))))) |
18 | 17 | cbvralv 3320 | . . 3 ⊢ (∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
19 | 18 | rexbii 3189 | . 2 ⊢ (∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
20 | 11, 19 | sylib 208 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∃wrex 3062 ∖ cdif 3720 ∪ cun 3721 ∩ cin 3722 {csn 4316 ∪ ciun 4654 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Fincfn 8109 infcinf 8503 ℂcc 10136 ℝcr 10137 ℝ*cxr 10275 < clt 10276 ≤ cle 10277 − cmin 10468 ℝ+crp 12035 ℑcim 14046 abscabs 14182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 |
This theorem is referenced by: climxlim2lem 40589 |
Copyright terms: Public domain | W3C validator |