![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version |
Description: Alias for ax-cnre 10221, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-cnre 10221 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 (class class class)co 6814 ℂcc 10146 ℝcr 10147 ici 10150 + caddc 10151 · cmul 10153 |
This theorem was proved from axioms: ax-cnre 10221 |
This theorem is referenced by: mulid1 10249 1re 10251 mul02 10426 cnegex 10429 recex 10871 creur 11226 creui 11227 cju 11228 cnref1o 12040 replim 14075 ipasslem11 28025 |
Copyright terms: Public domain | W3C validator |