MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 10248
Description: Alias for ax-cnre 10221, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 10221 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wrex 3051  (class class class)co 6814  cc 10146  cr 10147  ici 10150   + caddc 10151   · cmul 10153
This theorem was proved from axioms:  ax-cnre 10221
This theorem is referenced by:  mulid1  10249  1re  10251  mul02  10426  cnegex  10429  recex  10871  creur  11226  creui  11227  cju  11228  cnref1o  12040  replim  14075  ipasslem11  28025
  Copyright terms: Public domain W3C validator