MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprest2 Structured version   Visualization version   GIF version

Theorem cnprest2 21294
Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = 𝐽
cnprest.2 𝑌 = 𝐾
Assertion
Ref Expression
cnprest2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))

Proof of Theorem cnprest2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 21246 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
2 cnprest.1 . . . . 5 𝑋 = 𝐽
32cnprcl 21249 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
41, 3jca 555 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
54a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
6 cnptop1 21246 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝐽 ∈ Top)
72cnprcl 21249 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝑃𝑋)
86, 7jca 555 . . 3 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
98a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
10 simpl2 1230 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝐵)
11 simprr 813 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑃𝑋)
1210, 11ffvelrnd 6521 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑃) ∈ 𝐵)
1312biantrud 529 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵)))
14 elin 3937 . . . . . . . 8 ((𝐹𝑃) ∈ (𝑥𝐵) ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵))
1513, 14syl6bbr 278 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
16 imassrn 5633 . . . . . . . . . . . 12 (𝐹𝑦) ⊆ ran 𝐹
17 frn 6212 . . . . . . . . . . . . 13 (𝐹:𝑋𝐵 → ran 𝐹𝐵)
1810, 17syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ran 𝐹𝐵)
1916, 18syl5ss 3753 . . . . . . . . . . 11 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑦) ⊆ 𝐵)
2019biantrud 529 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ ((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵)))
21 ssin 3976 . . . . . . . . . 10 (((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵) ↔ (𝐹𝑦) ⊆ (𝑥𝐵))
2220, 21syl6bb 276 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
2322anbi2d 742 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2423rexbidv 3188 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2515, 24imbi12d 333 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
2625ralbidv 3122 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
27 vex 3341 . . . . . . . 8 𝑥 ∈ V
2827inex1 4949 . . . . . . 7 (𝑥𝐵) ∈ V
2928a1i 11 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑥𝐾) → (𝑥𝐵) ∈ V)
30 simpl1 1228 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ Top)
31 cnprest.2 . . . . . . . . . 10 𝑌 = 𝐾
32 uniexg 7118 . . . . . . . . . 10 (𝐾 ∈ Top → 𝐾 ∈ V)
3331, 32syl5eqel 2841 . . . . . . . . 9 (𝐾 ∈ Top → 𝑌 ∈ V)
3430, 33syl 17 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑌 ∈ V)
35 simpl3 1232 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵𝑌)
3634, 35ssexd 4955 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵 ∈ V)
37 elrest 16288 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
3830, 36, 37syl2anc 696 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
39 eleq2 2826 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝐹𝑃) ∈ 𝑧 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
40 sseq2 3766 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → ((𝐹𝑦) ⊆ 𝑧 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
4140anbi2d 742 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4241rexbidv 3188 . . . . . . . 8 (𝑧 = (𝑥𝐵) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4339, 42imbi12d 333 . . . . . . 7 (𝑧 = (𝑥𝐵) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4443adantl 473 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑧 = (𝑥𝐵)) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4529, 38, 44ralxfr2d 5029 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4626, 45bitr4d 271 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
47 simprl 811 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ Top)
482, 31iscnp2 21243 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
4948baib 982 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5047, 30, 11, 49syl3anc 1477 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5110, 35fssd 6216 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝑌)
5251biantrurd 530 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5350, 52bitr4d 271 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))))
542toptopon 20922 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5547, 54sylib 208 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
5631toptopon 20922 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
5730, 56sylib 208 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
58 resttopon 21165 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
5957, 35, 58syl2anc 696 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
60 iscnp 21241 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
6155, 59, 11, 60syl3anc 1477 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
6210biantrurd 530 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
6361, 62bitr4d 271 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
6446, 53, 633bitr4d 300 . . 3 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
6564ex 449 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃))))
665, 9, 65pm5.21ndd 368 1 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wcel 2137  wral 3048  wrex 3049  Vcvv 3338  cin 3712  wss 3713   cuni 4586  ran crn 5265  cima 5267  wf 6043  cfv 6047  (class class class)co 6811  t crest 16281  Topctop 20898  TopOnctopon 20915   CnP ccnp 21229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-oadd 7731  df-er 7909  df-map 8023  df-en 8120  df-fin 8123  df-fi 8480  df-rest 16283  df-topgen 16304  df-top 20899  df-topon 20916  df-bases 20950  df-cnp 21232
This theorem is referenced by:  limccnp  23852  limccnp2  23853  dirkercncflem4  40824  dirkercncf  40825  fouriercnp  40944
  Copyright terms: Public domain W3C validator