![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmsgnsubg | Structured version Visualization version GIF version |
Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnmsgnsubg.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
Ref | Expression |
---|---|
cnmsgnsubg | ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmsgnsubg.m | . 2 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
2 | elpri 4337 | . . 3 ⊢ (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1)) | |
3 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
4 | ax-1cn 10196 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4 | syl6eqel 2858 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
6 | id 22 | . . . . 5 ⊢ (𝑥 = -1 → 𝑥 = -1) | |
7 | neg1cn 11326 | . . . . 5 ⊢ -1 ∈ ℂ | |
8 | 6, 7 | syl6eqel 2858 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ∈ ℂ) |
9 | 5, 8 | jaoi 846 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ) |
10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ) |
11 | ax-1ne0 10207 | . . . . . 6 ⊢ 1 ≠ 0 | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝑥 = 1 → 1 ≠ 0) |
13 | 3, 12 | eqnetrd 3010 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ≠ 0) |
14 | neg1ne0 11328 | . . . . . 6 ⊢ -1 ≠ 0 | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 = -1 → -1 ≠ 0) |
16 | 6, 15 | eqnetrd 3010 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ≠ 0) |
17 | 13, 16 | jaoi 846 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0) |
18 | 2, 17 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ≠ 0) |
19 | elpri 4337 | . . 3 ⊢ (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1)) | |
20 | oveq12 6802 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
21 | 4 | mulid1i 10244 | . . . . . 6 ⊢ (1 · 1) = 1 |
22 | 1ex 10237 | . . . . . . 7 ⊢ 1 ∈ V | |
23 | 22 | prid1 4433 | . . . . . 6 ⊢ 1 ∈ {1, -1} |
24 | 21, 23 | eqeltri 2846 | . . . . 5 ⊢ (1 · 1) ∈ {1, -1} |
25 | 20, 24 | syl6eqel 2858 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
26 | oveq12 6802 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1)) | |
27 | 7 | mulid1i 10244 | . . . . . 6 ⊢ (-1 · 1) = -1 |
28 | negex 10481 | . . . . . . 7 ⊢ -1 ∈ V | |
29 | 28 | prid2 4434 | . . . . . 6 ⊢ -1 ∈ {1, -1} |
30 | 27, 29 | eqeltri 2846 | . . . . 5 ⊢ (-1 · 1) ∈ {1, -1} |
31 | 26, 30 | syl6eqel 2858 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
32 | oveq12 6802 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1)) | |
33 | 7 | mulid2i 10245 | . . . . . 6 ⊢ (1 · -1) = -1 |
34 | 33, 29 | eqeltri 2846 | . . . . 5 ⊢ (1 · -1) ∈ {1, -1} |
35 | 32, 34 | syl6eqel 2858 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
36 | oveq12 6802 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1)) | |
37 | neg1mulneg1e1 11447 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
38 | 37, 23 | eqeltri 2846 | . . . . 5 ⊢ (-1 · -1) ∈ {1, -1} |
39 | 36, 38 | syl6eqel 2858 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
40 | 25, 31, 35, 39 | ccase 1022 | . . 3 ⊢ (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1}) |
41 | 2, 19, 40 | syl2an 583 | . 2 ⊢ ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1}) |
42 | oveq2 6801 | . . . . 5 ⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) | |
43 | 1div1e1 10919 | . . . . . 6 ⊢ (1 / 1) = 1 | |
44 | 43, 23 | eqeltri 2846 | . . . . 5 ⊢ (1 / 1) ∈ {1, -1} |
45 | 42, 44 | syl6eqel 2858 | . . . 4 ⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1}) |
46 | oveq2 6801 | . . . . 5 ⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) | |
47 | divneg2 10951 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
48 | 4, 4, 11, 47 | mp3an 1572 | . . . . . . 7 ⊢ -(1 / 1) = (1 / -1) |
49 | 43 | negeqi 10476 | . . . . . . 7 ⊢ -(1 / 1) = -1 |
50 | 48, 49 | eqtr3i 2795 | . . . . . 6 ⊢ (1 / -1) = -1 |
51 | 50, 29 | eqeltri 2846 | . . . . 5 ⊢ (1 / -1) ∈ {1, -1} |
52 | 46, 51 | syl6eqel 2858 | . . . 4 ⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1}) |
53 | 45, 52 | jaoi 846 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1}) |
54 | 2, 53 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1}) |
55 | 1, 10, 18, 41, 23, 54 | cnmsubglem 20024 | 1 ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 ∨ wo 836 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∖ cdif 3720 {csn 4316 {cpr 4318 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 0cc0 10138 1c1 10139 · cmul 10143 -cneg 10469 / cdiv 10886 ↾s cress 16065 SubGrpcsubg 17796 mulGrpcmgp 18697 ℂfldccnfld 19961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-subg 17799 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-cnfld 19962 |
This theorem is referenced by: cnmsgngrp 20140 psgninv 20143 zrhpsgnmhm 20145 |
Copyright terms: Public domain | W3C validator |