![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmsgngrp | Structured version Visualization version GIF version |
Description: The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnmsgngrp.u | ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) |
Ref | Expression |
---|---|
cnmsgngrp | ⊢ 𝑈 ∈ Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
2 | 1 | cnmsgnsubg 20138 | . 2 ⊢ {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
3 | cnmsgngrp.u | . . . 4 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
4 | cnex 10219 | . . . . . 6 ⊢ ℂ ∈ V | |
5 | difss 3888 | . . . . . 6 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
6 | 4, 5 | ssexi 4937 | . . . . 5 ⊢ (ℂ ∖ {0}) ∈ V |
7 | ax-1cn 10196 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | ax-1ne0 10207 | . . . . . . 7 ⊢ 1 ≠ 0 | |
9 | eldifsn 4453 | . . . . . . 7 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0)) | |
10 | 7, 8, 9 | mpbir2an 690 | . . . . . 6 ⊢ 1 ∈ (ℂ ∖ {0}) |
11 | neg1cn 11326 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
12 | neg1ne0 11328 | . . . . . . 7 ⊢ -1 ≠ 0 | |
13 | eldifsn 4453 | . . . . . . 7 ⊢ (-1 ∈ (ℂ ∖ {0}) ↔ (-1 ∈ ℂ ∧ -1 ≠ 0)) | |
14 | 11, 12, 13 | mpbir2an 690 | . . . . . 6 ⊢ -1 ∈ (ℂ ∖ {0}) |
15 | prssi 4487 | . . . . . 6 ⊢ ((1 ∈ (ℂ ∖ {0}) ∧ -1 ∈ (ℂ ∖ {0})) → {1, -1} ⊆ (ℂ ∖ {0})) | |
16 | 10, 14, 15 | mp2an 672 | . . . . 5 ⊢ {1, -1} ⊆ (ℂ ∖ {0}) |
17 | ressabs 16147 | . . . . 5 ⊢ (((ℂ ∖ {0}) ∈ V ∧ {1, -1} ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})) | |
18 | 6, 16, 17 | mp2an 672 | . . . 4 ⊢ (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) |
19 | 3, 18 | eqtr4i 2796 | . . 3 ⊢ 𝑈 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) |
20 | 19 | subggrp 17805 | . 2 ⊢ ({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑈 ∈ Grp) |
21 | 2, 20 | ax-mp 5 | 1 ⊢ 𝑈 ∈ Grp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 ≠ wne 2943 Vcvv 3351 ∖ cdif 3720 ⊆ wss 3723 {csn 4316 {cpr 4318 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 0cc0 10138 1c1 10139 -cneg 10469 ↾s cress 16065 Grpcgrp 17630 SubGrpcsubg 17796 mulGrpcmgp 18697 ℂfldccnfld 19961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-subg 17799 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-cnfld 19962 |
This theorem is referenced by: psgnghm 20141 |
Copyright terms: Public domain | W3C validator |