Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkc Structured version   Visualization version   GIF version

Theorem cnmptkc 21530
 Description: The curried first projection function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
cnmptkc (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝑥)) ∈ (𝐽 Cn (𝐽 ^ko 𝐾)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem cnmptkc
StepHypRef Expression
1 fconstmpt 5197 . . 3 (𝑌 × {𝑥}) = (𝑦𝑌𝑥)
21mpteq2i 4774 . 2 (𝑥𝑋 ↦ (𝑌 × {𝑥})) = (𝑥𝑋 ↦ (𝑦𝑌𝑥))
3 cnmptk1.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmptk1.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
5 xkoccn 21470 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑥𝑋 ↦ (𝑌 × {𝑥})) ∈ (𝐽 Cn (𝐽 ^ko 𝐾)))
63, 4, 5syl2anc 694 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑌 × {𝑥})) ∈ (𝐽 Cn (𝐽 ^ko 𝐾)))
72, 6syl5eqelr 2735 1 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝑥)) ∈ (𝐽 Cn (𝐽 ^ko 𝐾)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2030  {csn 4210   ↦ cmpt 4762   × cxp 5141  ‘cfv 5926  (class class class)co 6690  TopOnctopon 20763   Cn ccn 21076   ^ko cxko 21412 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-fin 8001  df-fi 8358  df-rest 16130  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cn 21079  df-cnp 21080  df-cmp 21238  df-xko 21414 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator