![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptkc | Structured version Visualization version GIF version |
Description: The curried first projection function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
Ref | Expression |
---|---|
cnmptkc | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝑥)) ∈ (𝐽 Cn (𝐽 ^ko 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5197 | . . 3 ⊢ (𝑌 × {𝑥}) = (𝑦 ∈ 𝑌 ↦ 𝑥) | |
2 | 1 | mpteq2i 4774 | . 2 ⊢ (𝑥 ∈ 𝑋 ↦ (𝑌 × {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝑥)) |
3 | cnmptk1.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
4 | cnmptk1.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
5 | xkoccn 21470 | . . 3 ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑥 ∈ 𝑋 ↦ (𝑌 × {𝑥})) ∈ (𝐽 Cn (𝐽 ^ko 𝐾))) | |
6 | 3, 4, 5 | syl2anc 694 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑌 × {𝑥})) ∈ (𝐽 Cn (𝐽 ^ko 𝐾))) |
7 | 2, 6 | syl5eqelr 2735 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝑥)) ∈ (𝐽 Cn (𝐽 ^ko 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 {csn 4210 ↦ cmpt 4762 × cxp 5141 ‘cfv 5926 (class class class)co 6690 TopOnctopon 20763 Cn ccn 21076 ^ko cxko 21412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-fin 8001 df-fi 8358 df-rest 16130 df-topgen 16151 df-top 20747 df-topon 20764 df-bases 20798 df-cn 21079 df-cnp 21080 df-cmp 21238 df-xko 21414 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |