MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptcom Structured version   Visualization version   GIF version

Theorem cnmptcom 21475
Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmptcom.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptcom.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptcom.6 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Assertion
Ref Expression
cnmptcom (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐿   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmptcom
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptcom.3 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmptcom.4 . . . . . . . . 9 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txtopon 21388 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 693 . . . . . . . 8 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmptcom.6 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
6 cntop2 21039 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
75, 6syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
8 eqid 2621 . . . . . . . . . 10 𝐿 = 𝐿
98toptopon 20716 . . . . . . . . 9 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
107, 9sylib 208 . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
11 cnf2 21047 . . . . . . . 8 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
124, 10, 5, 11syl3anc 1325 . . . . . . 7 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
13 eqid 2621 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1413fmpt2 7234 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 𝐿 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
15 ralcom 3096 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 𝐿 ↔ ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
1614, 15bitr3i 266 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿 ↔ ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
1712, 16sylib 208 . . . . . 6 (𝜑 → ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
18 eqid 2621 . . . . . . 7 (𝑦𝑌, 𝑥𝑋𝐴) = (𝑦𝑌, 𝑥𝑋𝐴)
1918fmpt2 7234 . . . . . 6 (∀𝑦𝑌𝑥𝑋 𝐴 𝐿 ↔ (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
2017, 19sylib 208 . . . . 5 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
21 ffn 6043 . . . . 5 ((𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿 → (𝑦𝑌, 𝑥𝑋𝐴) Fn (𝑌 × 𝑋))
2220, 21syl 17 . . . 4 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) Fn (𝑌 × 𝑋))
23 fnov 6765 . . . 4 ((𝑦𝑌, 𝑥𝑋𝐴) Fn (𝑌 × 𝑋) ↔ (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
2422, 23sylib 208 . . 3 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
25 nfcv 2763 . . . . . . 7 𝑦𝑧
26 nfcv 2763 . . . . . . 7 𝑥𝑧
27 nfcv 2763 . . . . . . 7 𝑥𝑤
28 nfv 1842 . . . . . . . 8 𝑦𝜑
29 nfcv 2763 . . . . . . . . . 10 𝑦𝑥
30 nfmpt22 6720 . . . . . . . . . 10 𝑦(𝑥𝑋, 𝑦𝑌𝐴)
3129, 30, 25nfov 6673 . . . . . . . . 9 𝑦(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧)
32 nfmpt21 6719 . . . . . . . . . 10 𝑦(𝑦𝑌, 𝑥𝑋𝐴)
3325, 32, 29nfov 6673 . . . . . . . . 9 𝑦(𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)
3431, 33nfeq 2775 . . . . . . . 8 𝑦(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)
3528, 34nfim 1824 . . . . . . 7 𝑦(𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
36 nfv 1842 . . . . . . . 8 𝑥𝜑
37 nfmpt21 6719 . . . . . . . . . 10 𝑥(𝑥𝑋, 𝑦𝑌𝐴)
3827, 37, 26nfov 6673 . . . . . . . . 9 𝑥(𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)
39 nfmpt22 6720 . . . . . . . . . 10 𝑥(𝑦𝑌, 𝑥𝑋𝐴)
4026, 39, 27nfov 6673 . . . . . . . . 9 𝑥(𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
4138, 40nfeq 2775 . . . . . . . 8 𝑥(𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
4236, 41nfim 1824 . . . . . . 7 𝑥(𝜑 → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
43 oveq2 6655 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧))
44 oveq1 6654 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
4543, 44eqeq12d 2636 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) ↔ (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
4645imbi2d 330 . . . . . . 7 (𝑦 = 𝑧 → ((𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)) ↔ (𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥))))
47 oveq1 6654 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧))
48 oveq2 6655 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
4947, 48eqeq12d 2636 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥) ↔ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
5049imbi2d 330 . . . . . . 7 (𝑥 = 𝑤 → ((𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)) ↔ (𝜑 → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))))
51 rsp2 2935 . . . . . . . . 9 (∀𝑦𝑌𝑥𝑋 𝐴 𝐿 → ((𝑦𝑌𝑥𝑋) → 𝐴 𝐿))
5251, 17syl11 33 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → (𝜑𝐴 𝐿))
5313ovmpt4g 6780 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑌𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
54533com12 1268 . . . . . . . . . 10 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
5518ovmpt4g 6780 . . . . . . . . . 10 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = 𝐴)
5654, 55eqtr4d 2658 . . . . . . . . 9 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
57563expia 1266 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → (𝐴 𝐿 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
5852, 57syld 47 . . . . . . 7 ((𝑦𝑌𝑥𝑋) → (𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
5925, 26, 27, 35, 42, 46, 50, 58vtocl2gaf 3271 . . . . . 6 ((𝑧𝑌𝑤𝑋) → (𝜑 → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
6059com12 32 . . . . 5 (𝜑 → ((𝑧𝑌𝑤𝑋) → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
61603impib 1261 . . . 4 ((𝜑𝑧𝑌𝑤𝑋) → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
6261mpt2eq3dva 6716 . . 3 (𝜑 → (𝑧𝑌, 𝑤𝑋 ↦ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
6324, 62eqtr4d 2658 . 2 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)))
642, 1cnmpt2nd 21466 . . 3 (𝜑 → (𝑧𝑌, 𝑤𝑋𝑤) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
652, 1cnmpt1st 21465 . . 3 (𝜑 → (𝑧𝑌, 𝑤𝑋𝑧) ∈ ((𝐾 ×t 𝐽) Cn 𝐾))
662, 1, 64, 65, 5cnmpt22f 21472 . 2 (𝜑 → (𝑧𝑌, 𝑤𝑋 ↦ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
6763, 66eqeltrd 2700 1 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1482  wcel 1989  wral 2911   cuni 4434   × cxp 5110   Fn wfn 5881  wf 5882  cfv 5886  (class class class)co 6647  cmpt2 6649  Topctop 20692  TopOnctopon 20709   Cn ccn 21022   ×t ctx 21357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-fo 5892  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-1st 7165  df-2nd 7166  df-map 7856  df-topgen 16098  df-top 20693  df-topon 20710  df-bases 20744  df-cn 21025  df-tx 21359
This theorem is referenced by:  cnmpt2k  21485  htpycc  22773
  Copyright terms: Public domain W3C validator