MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2pc Structured version   Visualization version   GIF version

Theorem cnmpt2pc 22924
Description: Piecewise definition of a continuous function on a real interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
cnmpt2pc.r 𝑅 = (topGen‘ran (,))
cnmpt2pc.m 𝑀 = (𝑅t (𝐴[,]𝐵))
cnmpt2pc.n 𝑁 = (𝑅t (𝐵[,]𝐶))
cnmpt2pc.o 𝑂 = (𝑅t (𝐴[,]𝐶))
cnmpt2pc.a (𝜑𝐴 ∈ ℝ)
cnmpt2pc.c (𝜑𝐶 ∈ ℝ)
cnmpt2pc.b (𝜑𝐵 ∈ (𝐴[,]𝐶))
cnmpt2pc.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt2pc.q ((𝜑 ∧ (𝑥 = 𝐵𝑦𝑋)) → 𝐷 = 𝐸)
cnmpt2pc.d (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
cnmpt2pc.e (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
Assertion
Ref Expression
cnmpt2pc (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑂 ×t 𝐽) Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem cnmpt2pc
StepHypRef Expression
1 eqid 2756 . 2 (𝑂 ×t 𝐽) = (𝑂 ×t 𝐽)
2 eqid 2756 . 2 𝐾 = 𝐾
3 cnmpt2pc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 cnmpt2pc.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
5 iccssre 12444 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴[,]𝐶) ⊆ ℝ)
63, 4, 5syl2anc 696 . . . . 5 (𝜑 → (𝐴[,]𝐶) ⊆ ℝ)
7 cnmpt2pc.b . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐶))
86, 7sseldd 3741 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 icccld 22767 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
103, 8, 9syl2anc 696 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
11 cnmpt2pc.r . . . . . . 7 𝑅 = (topGen‘ran (,))
1211fveq2i 6351 . . . . . 6 (Clsd‘𝑅) = (Clsd‘(topGen‘ran (,)))
1310, 12syl6eleqr 2846 . . . . 5 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑅))
14 ssun1 3915 . . . . . 6 (𝐴[,]𝐵) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))
15 iccsplit 12494 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
163, 4, 7, 15syl3anc 1477 . . . . . 6 (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
1714, 16syl5sseqr 3791 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶))
18 uniretop 22763 . . . . . . 7 ℝ = (topGen‘ran (,))
1911unieqi 4593 . . . . . . 7 𝑅 = (topGen‘ran (,))
2018, 19eqtr4i 2781 . . . . . 6 ℝ = 𝑅
2120restcldi 21175 . . . . 5 (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐴[,]𝐵) ∈ (Clsd‘𝑅) ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶)) → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
226, 13, 17, 21syl3anc 1477 . . . 4 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
23 cnmpt2pc.o . . . . 5 𝑂 = (𝑅t (𝐴[,]𝐶))
2423fveq2i 6351 . . . 4 (Clsd‘𝑂) = (Clsd‘(𝑅t (𝐴[,]𝐶)))
2522, 24syl6eleqr 2846 . . 3 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑂))
26 cnmpt2pc.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
27 toponuni 20917 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2826, 27syl 17 . . . 4 (𝜑𝑋 = 𝐽)
29 topontop 20916 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
30 eqid 2756 . . . . . 6 𝐽 = 𝐽
3130topcld 21037 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ (Clsd‘𝐽))
3226, 29, 313syl 18 . . . 4 (𝜑 𝐽 ∈ (Clsd‘𝐽))
3328, 32eqeltrd 2835 . . 3 (𝜑𝑋 ∈ (Clsd‘𝐽))
34 txcld 21604 . . 3 (((𝐴[,]𝐵) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
3525, 33, 34syl2anc 696 . 2 (𝜑 → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
36 icccld 22767 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran (,))))
378, 4, 36syl2anc 696 . . . . . 6 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran (,))))
3837, 12syl6eleqr 2846 . . . . 5 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑅))
39 ssun2 3916 . . . . . 6 (𝐵[,]𝐶) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))
4039, 16syl5sseqr 3791 . . . . 5 (𝜑 → (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶))
4120restcldi 21175 . . . . 5 (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐵[,]𝐶) ∈ (Clsd‘𝑅) ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶)) → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
426, 38, 40, 41syl3anc 1477 . . . 4 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
4342, 24syl6eleqr 2846 . . 3 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑂))
44 txcld 21604 . . 3 (((𝐵[,]𝐶) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
4543, 33, 44syl2anc 696 . 2 (𝜑 → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
4616xpeq1d 5291 . . . 4 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋))
47 xpundir 5325 . . . 4 (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋))
4846, 47syl6eq 2806 . . 3 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)))
49 retopon 22764 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
5011, 49eqeltri 2831 . . . . . . 7 𝑅 ∈ (TopOn‘ℝ)
51 resttopon 21163 . . . . . . 7 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐶) ⊆ ℝ) → (𝑅t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶)))
5250, 6, 51sylancr 698 . . . . . 6 (𝜑 → (𝑅t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶)))
5323, 52syl5eqel 2839 . . . . 5 (𝜑𝑂 ∈ (TopOn‘(𝐴[,]𝐶)))
54 txtopon 21592 . . . . 5 ((𝑂 ∈ (TopOn‘(𝐴[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)))
5553, 26, 54syl2anc 696 . . . 4 (𝜑 → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)))
56 toponuni 20917 . . . 4 ((𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)) → ((𝐴[,]𝐶) × 𝑋) = (𝑂 ×t 𝐽))
5755, 56syl 17 . . 3 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (𝑂 ×t 𝐽))
5848, 57eqtr3d 2792 . 2 (𝜑 → (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)) = (𝑂 ×t 𝐽))
59 cnmpt2pc.m . . . . . . . . . 10 𝑀 = (𝑅t (𝐴[,]𝐵))
6017, 6sstrd 3750 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
61 resttopon 21163 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝑅t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
6250, 60, 61sylancr 698 . . . . . . . . . 10 (𝜑 → (𝑅t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
6359, 62syl5eqel 2839 . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘(𝐴[,]𝐵)))
64 txtopon 21592 . . . . . . . . 9 ((𝑀 ∈ (TopOn‘(𝐴[,]𝐵)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)))
6563, 26, 64syl2anc 696 . . . . . . . 8 (𝜑 → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)))
66 cnmpt2pc.d . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
67 cntop2 21243 . . . . . . . . . 10 ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾) → 𝐾 ∈ Top)
6866, 67syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
692toptopon 20920 . . . . . . . . 9 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
7068, 69sylib 208 . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
71 elicc2 12427 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
723, 8, 71syl2anc 696 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
7372biimpa 502 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
7473simp3d 1139 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
75743adant3 1127 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑋) → 𝑥𝐵)
7675iftrued 4234 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑋) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐷)
7776mpt2eq3dva 6880 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷))
7877, 66eqeltrd 2835 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
79 cnf2 21251 . . . . . . . 8 (((𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
8065, 70, 78, 79syl3anc 1477 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
81 eqid 2756 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
8281fmpt2 7401 . . . . . . 7 (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
8380, 82sylibr 224 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
84 cnmpt2pc.n . . . . . . . . . 10 𝑁 = (𝑅t (𝐵[,]𝐶))
8540, 6sstrd 3750 . . . . . . . . . . 11 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
86 resttopon 21163 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐵[,]𝐶) ⊆ ℝ) → (𝑅t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶)))
8750, 85, 86sylancr 698 . . . . . . . . . 10 (𝜑 → (𝑅t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶)))
8884, 87syl5eqel 2839 . . . . . . . . 9 (𝜑𝑁 ∈ (TopOn‘(𝐵[,]𝐶)))
89 txtopon 21592 . . . . . . . . 9 ((𝑁 ∈ (TopOn‘(𝐵[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)))
9088, 26, 89syl2anc 696 . . . . . . . 8 (𝜑 → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)))
91 elicc2 12427 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
928, 4, 91syl2anc 696 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
9392biimpa 502 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶))
9493simp2d 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
9594biantrud 529 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥𝐵 ↔ (𝑥𝐵𝐵𝑥)))
9693simp1d 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 ∈ ℝ)
978adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝐵 ∈ ℝ)
9896, 97letri3d 10367 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
9995, 98bitr4d 271 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥𝐵𝑥 = 𝐵))
100993adant3 1127 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥𝐵𝑥 = 𝐵))
101 cnmpt2pc.q . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 = 𝐵𝑦𝑋)) → 𝐷 = 𝐸)
102101ancom2s 879 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → 𝐷 = 𝐸)
103102ifeq1d 4244 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → if(𝑥𝐵, 𝐷, 𝐸) = if(𝑥𝐵, 𝐸, 𝐸))
104 ifid 4265 . . . . . . . . . . . . . . 15 if(𝑥𝐵, 𝐸, 𝐸) = 𝐸
105103, 104syl6eq 2806 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
106105expr 644 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋) → (𝑥 = 𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
1071063adant2 1126 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥 = 𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
108100, 107sylbid 230 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
109 iffalse 4235 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
110108, 109pm2.61d1 171 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
111110mpt2eq3dva 6880 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸))
112 cnmpt2pc.e . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
113111, 112eqeltrd 2835 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
114 cnf2 21251 . . . . . . . 8 (((𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
11590, 70, 113, 114syl3anc 1477 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
116 eqid 2756 . . . . . . . 8 (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
117116fmpt2 7401 . . . . . . 7 (∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
118115, 117sylibr 224 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
119 ralun 3934 . . . . . 6 ((∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ∧ ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾) → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
12083, 118, 119syl2anc 696 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
12116raleqdv 3279 . . . . 5 (𝜑 → (∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾))
122120, 121mpbird 247 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
123 eqid 2756 . . . . 5 (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
124123fmpt2 7401 . . . 4 (∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾)
125122, 124sylib 208 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾)
12657feq2d 6188 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)): (𝑂 ×t 𝐽)⟶ 𝐾))
127125, 126mpbid 222 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)): (𝑂 ×t 𝐽)⟶ 𝐾)
128 ssid 3761 . . . 4 𝑋𝑋
129 resmpt2 6919 . . . 4 (((𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ 𝑋𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
13017, 128, 129sylancl 697 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
131 retop 22762 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
13211, 131eqeltri 2831 . . . . . . . . 9 𝑅 ∈ Top
133 ovex 6837 . . . . . . . . 9 (𝐴[,]𝐶) ∈ V
134 resttop 21162 . . . . . . . . 9 ((𝑅 ∈ Top ∧ (𝐴[,]𝐶) ∈ V) → (𝑅t (𝐴[,]𝐶)) ∈ Top)
135132, 133, 134mp2an 710 . . . . . . . 8 (𝑅t (𝐴[,]𝐶)) ∈ Top
13623, 135eqeltri 2831 . . . . . . 7 𝑂 ∈ Top
137136a1i 11 . . . . . 6 (𝜑𝑂 ∈ Top)
138 ovexd 6839 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ∈ V)
139 txrest 21632 . . . . . 6 (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐴[,]𝐵) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)))
140137, 26, 138, 33, 139syl22anc 1478 . . . . 5 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)))
141132a1i 11 . . . . . . . 8 (𝜑𝑅 ∈ Top)
142 ovexd 6839 . . . . . . . 8 (𝜑 → (𝐴[,]𝐶) ∈ V)
143 restabs 21167 . . . . . . . 8 ((𝑅 ∈ Top ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅t (𝐴[,]𝐵)))
144141, 17, 142, 143syl3anc 1477 . . . . . . 7 (𝜑 → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅t (𝐴[,]𝐵)))
14523oveq1i 6819 . . . . . . 7 (𝑂t (𝐴[,]𝐵)) = ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵))
146144, 145, 593eqtr4g 2815 . . . . . 6 (𝜑 → (𝑂t (𝐴[,]𝐵)) = 𝑀)
14728oveq2d 6825 . . . . . . 7 (𝜑 → (𝐽t 𝑋) = (𝐽t 𝐽))
14830restid 16292 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝐽t 𝐽) = 𝐽)
14926, 148syl 17 . . . . . . 7 (𝜑 → (𝐽t 𝐽) = 𝐽)
150147, 149eqtrd 2790 . . . . . 6 (𝜑 → (𝐽t 𝑋) = 𝐽)
151146, 150oveq12d 6827 . . . . 5 (𝜑 → ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)) = (𝑀 ×t 𝐽))
152140, 151eqtrd 2790 . . . 4 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = (𝑀 ×t 𝐽))
153152oveq1d 6824 . . 3 (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾) = ((𝑀 ×t 𝐽) Cn 𝐾))
15478, 130, 1533eltr4d 2850 . 2 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾))
155 resmpt2 6919 . . . 4 (((𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ 𝑋𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
15640, 128, 155sylancl 697 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
157 ovexd 6839 . . . . . 6 (𝜑 → (𝐵[,]𝐶) ∈ V)
158 txrest 21632 . . . . . 6 (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐵[,]𝐶) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)))
159137, 26, 157, 33, 158syl22anc 1478 . . . . 5 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)))
160 restabs 21167 . . . . . . . 8 ((𝑅 ∈ Top ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅t (𝐵[,]𝐶)))
161141, 40, 142, 160syl3anc 1477 . . . . . . 7 (𝜑 → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅t (𝐵[,]𝐶)))
16223oveq1i 6819 . . . . . . 7 (𝑂t (𝐵[,]𝐶)) = ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶))
163161, 162, 843eqtr4g 2815 . . . . . 6 (𝜑 → (𝑂t (𝐵[,]𝐶)) = 𝑁)
164163, 150oveq12d 6827 . . . . 5 (𝜑 → ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)) = (𝑁 ×t 𝐽))
165159, 164eqtrd 2790 . . . 4 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = (𝑁 ×t 𝐽))
166165oveq1d 6824 . . 3 (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾) = ((𝑁 ×t 𝐽) Cn 𝐾))
167113, 156, 1663eltr4d 2850 . 2 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾))
1681, 2, 35, 45, 58, 127, 154, 167paste 21296 1 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑂 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  wral 3046  Vcvv 3336  cun 3709  wss 3711  ifcif 4226   cuni 4584   class class class wbr 4800   × cxp 5260  ran crn 5263  cres 5264  wf 6041  cfv 6045  (class class class)co 6809  cmpt2 6811  cr 10123  cle 10263  (,)cioo 12364  [,]cicc 12367  t crest 16279  topGenctg 16296  Topctop 20896  TopOnctopon 20913  Clsdccld 21018   Cn ccn 21226   ×t ctx 21561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-oadd 7729  df-er 7907  df-map 8021  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-fi 8478  df-sup 8509  df-inf 8510  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-n0 11481  df-z 11566  df-uz 11876  df-q 11978  df-ioo 12368  df-icc 12371  df-rest 16281  df-topgen 16302  df-top 20897  df-topon 20914  df-bases 20948  df-cld 21021  df-cn 21229  df-tx 21563
This theorem is referenced by:  htpycc  22976  pcocn  23013  pcohtpylem  23015  pcopt  23018  pcopt2  23019  pcoass  23020  pcorevlem  23022
  Copyright terms: Public domain W3C validator