![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt2nd | Structured version Visualization version GIF version |
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
Ref | Expression |
---|---|
cnmpt2nd | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 7354 | . . . . . 6 ⊢ 2nd :V–onto→V | |
2 | fofn 6278 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
4 | ssv 3766 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
5 | fnssres 6165 | . . . . 5 ⊢ ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
6 | 3, 4, 5 | mp2an 710 | . . . 4 ⊢ (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
7 | dffn5 6403 | . . . 4 ⊢ ((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧))) | |
8 | 6, 7 | mpbi 220 | . . 3 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) |
9 | fvres 6368 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd ‘𝑧)) | |
10 | 9 | mpteq2ia 4892 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) |
11 | vex 3343 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | vex 3343 | . . . . 5 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | op2ndd 7344 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
14 | 13 | mpt2mpt 6917 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
15 | 8, 10, 14 | 3eqtri 2786 | . 2 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
18 | tx2cn 21615 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | |
19 | 16, 17, 18 | syl2anc 696 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
20 | 15, 19 | syl5eqelr 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 ↦ cmpt 4881 × cxp 5264 ↾ cres 5268 Fn wfn 6044 –onto→wfo 6047 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 2nd c2nd 7332 TopOnctopon 20917 Cn ccn 21230 ×t ctx 21565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-map 8025 df-topgen 16306 df-top 20901 df-topon 20918 df-bases 20952 df-cn 21233 df-tx 21567 |
This theorem is referenced by: cnmptcom 21683 xkofvcn 21689 cnmptk2 21691 txhmeo 21808 txswaphmeo 21810 ptunhmeo 21813 xkohmeo 21820 tgpsubcn 22095 istgp2 22096 oppgtmd 22102 prdstmdd 22128 dvrcn 22188 divcn 22872 cnrehmeo 22953 htpycom 22976 htpyco1 22978 htpycc 22980 reparphti 22997 pcohtpylem 23019 pcorevlem 23026 cxpcn 24685 vmcn 27863 dipcn 27884 mndpluscn 30281 cvxsconn 31532 cvmlift2lem6 31597 |
Copyright terms: Public domain | W3C validator |