![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1st | Structured version Visualization version GIF version |
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
Ref | Expression |
---|---|
cnmpt1st | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 7230 | . . . . . 6 ⊢ 1st :V–onto→V | |
2 | fofn 6155 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
4 | ssv 3658 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
5 | fnssres 6042 | . . . . 5 ⊢ ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
6 | 3, 4, 5 | mp2an 708 | . . . 4 ⊢ (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
7 | dffn5 6280 | . . . 4 ⊢ ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧))) | |
8 | 6, 7 | mpbi 220 | . . 3 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) |
9 | fvres 6245 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st ‘𝑧)) | |
10 | 9 | mpteq2ia 4773 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) |
11 | vex 3234 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | vex 3234 | . . . . 5 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | op1std 7220 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
14 | 13 | mpt2mpt 6794 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
15 | 8, 10, 14 | 3eqtri 2677 | . 2 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
18 | tx1cn 21460 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | |
19 | 16, 17, 18 | syl2anc 694 | . 2 ⊢ (𝜑 → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
20 | 15, 19 | syl5eqelr 2735 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ↦ cmpt 4762 × cxp 5141 ↾ cres 5145 Fn wfn 5921 –onto→wfo 5924 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 1st c1st 7208 TopOnctopon 20763 Cn ccn 21076 ×t ctx 21411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fo 5932 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-map 7901 df-topgen 16151 df-top 20747 df-topon 20764 df-bases 20798 df-cn 21079 df-tx 21413 |
This theorem is referenced by: cnmptcom 21529 xkofvcn 21535 cnmptk2 21537 txhmeo 21654 txswaphmeo 21656 ptunhmeo 21659 xkohmeo 21666 tgpsubcn 21941 istgp2 21942 oppgtmd 21948 prdstmdd 21974 dvrcn 22034 divcn 22718 cnrehmeo 22799 htpycom 22822 htpyid 22823 htpyco1 22824 htpycc 22826 reparphti 22843 pcocn 22863 pcohtpylem 22865 pcopt 22868 pcopt2 22869 pcoass 22870 pcorevlem 22872 cxpcn 24531 vmcn 27682 dipcn 27703 mndpluscn 30100 cvxsconn 31351 cvmlift2lem12 31422 |
Copyright terms: Public domain | W3C validator |