Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1k Structured version   Visualization version   GIF version

Theorem cnmpt1k 21705
 Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt1k.m (𝜑𝑀 ∈ (TopOn‘𝑊))
cnmpt1k.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
cnmpt1k.b (𝜑 → (𝑦𝑌 ↦ (𝑧𝑍𝐵)) ∈ (𝐾 Cn (𝑀 ^ko 𝐿)))
cnmpt1k.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt1k (𝜑 → (𝑦𝑌 ↦ (𝑥𝑋𝐶)) ∈ (𝐾 Cn (𝑀 ^ko 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑧,𝑍,𝑦   𝑧,𝐴   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑧,𝐶   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥)   𝐵(𝑦,𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑧)   𝐾(𝑧)   𝐿(𝑧)   𝑀(𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem cnmpt1k
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cnmptk1.j . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmptk1.l . . . . . . 7 (𝜑𝐿 ∈ (TopOn‘𝑍))
3 cnmpt1k.a . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
4 cnf2 21273 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐴):𝑋𝑍)
51, 2, 3, 4syl3anc 1475 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋𝑍)
6 eqid 2770 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
76fmpt 6523 . . . . . 6 (∀𝑥𝑋 𝐴𝑍 ↔ (𝑥𝑋𝐴):𝑋𝑍)
85, 7sylibr 224 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐴𝑍)
98adantr 466 . . . 4 ((𝜑𝑦𝑌) → ∀𝑥𝑋 𝐴𝑍)
10 eqidd 2771 . . . 4 ((𝜑𝑦𝑌) → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
11 eqidd 2771 . . . 4 ((𝜑𝑦𝑌) → (𝑧𝑍𝐵) = (𝑧𝑍𝐵))
12 cnmpt1k.c . . . 4 (𝑧 = 𝐴𝐵 = 𝐶)
139, 10, 11, 12fmptcof 6539 . . 3 ((𝜑𝑦𝑌) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
1413mpteq2dva 4876 . 2 (𝜑 → (𝑦𝑌 ↦ ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴))) = (𝑦𝑌 ↦ (𝑥𝑋𝐶)))
15 cnmptk1.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
16 cnmpt1k.b . . 3 (𝜑 → (𝑦𝑌 ↦ (𝑧𝑍𝐵)) ∈ (𝐾 Cn (𝑀 ^ko 𝐿)))
17 topontop 20937 . . . . 5 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
182, 17syl 17 . . . 4 (𝜑𝐿 ∈ Top)
19 cnmpt1k.m . . . . 5 (𝜑𝑀 ∈ (TopOn‘𝑊))
20 topontop 20937 . . . . 5 (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top)
2119, 20syl 17 . . . 4 (𝜑𝑀 ∈ Top)
22 eqid 2770 . . . . 5 (𝑀 ^ko 𝐿) = (𝑀 ^ko 𝐿)
2322xkotopon 21623 . . . 4 ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀 ^ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
2418, 21, 23syl2anc 565 . . 3 (𝜑 → (𝑀 ^ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
2521, 3xkoco1cn 21680 . . 3 (𝜑 → (𝑤 ∈ (𝐿 Cn 𝑀) ↦ (𝑤 ∘ (𝑥𝑋𝐴))) ∈ ((𝑀 ^ko 𝐿) Cn (𝑀 ^ko 𝐽)))
26 coeq1 5418 . . 3 (𝑤 = (𝑧𝑍𝐵) → (𝑤 ∘ (𝑥𝑋𝐴)) = ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴)))
2715, 16, 24, 25, 26cnmpt11 21686 . 2 (𝜑 → (𝑦𝑌 ↦ ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴))) ∈ (𝐾 Cn (𝑀 ^ko 𝐽)))
2814, 27eqeltrrd 2850 1 (𝜑 → (𝑦𝑌 ↦ (𝑥𝑋𝐶)) ∈ (𝐾 Cn (𝑀 ^ko 𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ∀wral 3060   ↦ cmpt 4861   ∘ ccom 5253  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792  Topctop 20917  TopOnctopon 20934   Cn ccn 21248   ^ko cxko 21584 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-fin 8112  df-fi 8472  df-rest 16290  df-topgen 16311  df-top 20918  df-topon 20935  df-bases 20970  df-cn 21251  df-cmp 21410  df-xko 21586 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator