![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmgpid | Structured version Visualization version GIF version |
Description: The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007.) (Revised by AV, 26-Aug-2021.) |
Ref | Expression |
---|---|
cnmgpabl.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
Ref | Expression |
---|---|
cnmgpid | ⊢ (0g‘𝑀) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring 19991 | . 2 ⊢ ℂfld ∈ Ring | |
2 | difss 3881 | . 2 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
3 | ax-1cn 10207 | . . 3 ⊢ 1 ∈ ℂ | |
4 | ax-1ne0 10218 | . . 3 ⊢ 1 ≠ 0 | |
5 | eldifsn 4463 | . . 3 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0)) | |
6 | 3, 4, 5 | mpbir2an 993 | . 2 ⊢ 1 ∈ (ℂ ∖ {0}) |
7 | cnmgpabl.m | . . . 4 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
8 | cnfldbas 19973 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
9 | cnfld1 19994 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
10 | 7, 8, 9 | ringidss 18798 | . . 3 ⊢ ((ℂfld ∈ Ring ∧ (ℂ ∖ {0}) ⊆ ℂ ∧ 1 ∈ (ℂ ∖ {0})) → 1 = (0g‘𝑀)) |
11 | 10 | eqcomd 2767 | . 2 ⊢ ((ℂfld ∈ Ring ∧ (ℂ ∖ {0}) ⊆ ℂ ∧ 1 ∈ (ℂ ∖ {0})) → (0g‘𝑀) = 1) |
12 | 1, 2, 6, 11 | mp3an 1573 | 1 ⊢ (0g‘𝑀) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ∖ cdif 3713 ⊆ wss 3716 {csn 4322 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 0cc0 10149 1c1 10150 ↾s cress 16081 0gc0g 16323 mulGrpcmgp 18710 Ringcrg 18768 ℂfldccnfld 19969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-addf 10228 ax-mulf 10229 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-fz 12541 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-starv 16179 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-cmn 18416 df-mgp 18711 df-ur 18723 df-ring 18770 df-cring 18771 df-cnfld 19970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |