MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmgpid Structured version   Visualization version   GIF version

Theorem cnmgpid 20031
Description: The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007.) (Revised by AV, 26-Aug-2021.)
Hypothesis
Ref Expression
cnmgpabl.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
Assertion
Ref Expression
cnmgpid (0g𝑀) = 1

Proof of Theorem cnmgpid
StepHypRef Expression
1 cnring 19991 . 2 fld ∈ Ring
2 difss 3881 . 2 (ℂ ∖ {0}) ⊆ ℂ
3 ax-1cn 10207 . . 3 1 ∈ ℂ
4 ax-1ne0 10218 . . 3 1 ≠ 0
5 eldifsn 4463 . . 3 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0))
63, 4, 5mpbir2an 993 . 2 1 ∈ (ℂ ∖ {0})
7 cnmgpabl.m . . . 4 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
8 cnfldbas 19973 . . . 4 ℂ = (Base‘ℂfld)
9 cnfld1 19994 . . . 4 1 = (1r‘ℂfld)
107, 8, 9ringidss 18798 . . 3 ((ℂfld ∈ Ring ∧ (ℂ ∖ {0}) ⊆ ℂ ∧ 1 ∈ (ℂ ∖ {0})) → 1 = (0g𝑀))
1110eqcomd 2767 . 2 ((ℂfld ∈ Ring ∧ (ℂ ∖ {0}) ⊆ ℂ ∧ 1 ∈ (ℂ ∖ {0})) → (0g𝑀) = 1)
121, 2, 6, 11mp3an 1573 1 (0g𝑀) = 1
Colors of variables: wff setvar class
Syntax hints:  w3a 1072   = wceq 1632  wcel 2140  wne 2933  cdif 3713  wss 3716  {csn 4322  cfv 6050  (class class class)co 6815  cc 10147  0cc0 10149  1c1 10150  s cress 16081  0gc0g 16323  mulGrpcmgp 18710  Ringcrg 18768  fldccnfld 19969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-fz 12541  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-cmn 18416  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-cnfld 19970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator