![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmetdval | Structured version Visualization version GIF version |
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
cnmetdval.1 | ⊢ 𝐷 = (abs ∘ − ) |
Ref | Expression |
---|---|
cnmetdval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subf 10495 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
2 | opelxpi 5305 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) | |
3 | fvco3 6438 | . . 3 ⊢ (( − :(ℂ × ℂ)⟶ℂ ∧ 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) | |
4 | 1, 2, 3 | sylancr 698 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) |
5 | df-ov 6817 | . . 3 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
6 | cnmetdval.1 | . . . 4 ⊢ 𝐷 = (abs ∘ − ) | |
7 | 6 | fveq1i 6354 | . . 3 ⊢ (𝐷‘〈𝐴, 𝐵〉) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
8 | 5, 7 | eqtri 2782 | . 2 ⊢ (𝐴𝐷𝐵) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
9 | df-ov 6817 | . . 3 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
10 | 9 | fveq2i 6356 | . 2 ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘( − ‘〈𝐴, 𝐵〉)) |
11 | 4, 8, 10 | 3eqtr4g 2819 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 〈cop 4327 × cxp 5264 ∘ ccom 5270 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 − cmin 10478 abscabs 14193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-ltxr 10291 df-sub 10480 |
This theorem is referenced by: cnmet 22796 cnbl0 22798 cnblcld 22799 cnfldnm 22803 remetdval 22813 blcvx 22822 recld2 22838 zdis 22840 reperflem 22842 addcnlem 22888 divcn 22892 cncfmet 22932 cnheibor 22975 cnllycmp 22976 ipcn 23265 lmclim 23321 cncmet 23339 ovolfsval 23459 ellimc3 23862 lhop1lem 23995 ftc1lem6 24023 ulmdvlem1 24373 psercn 24399 pserdvlem2 24401 abelthlem2 24405 abelthlem3 24406 abelthlem5 24408 abelthlem7 24411 abelth 24414 dvlog2lem 24618 efopn 24624 logtayl 24626 logtayl2 24628 cxpcn3 24709 rlimcnp 24912 xrlimcnp 24915 efrlim 24916 lgamucov 24984 lgamcvg2 25001 ftalem3 25021 smcnlem 27882 hhcnf 29094 tpr2rico 30288 qqhcn 30365 qqhucn 30366 ftc1cnnc 33815 cntotbnd 33926 iccbnd 33970 cnmetcoval 39911 iooabslt 40242 limcrecl 40382 islpcn 40392 stirlinglem5 40816 ovolval2lem 41381 ovolval3 41385 |
Copyright terms: Public domain | W3C validator |