![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmet | Structured version Visualization version GIF version |
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
Ref | Expression |
---|---|
cnmet | ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10230 | . 2 ⊢ ℂ ∈ V | |
2 | absf 14297 | . . 3 ⊢ abs:ℂ⟶ℝ | |
3 | subf 10496 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
4 | fco 6220 | . . 3 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
5 | 2, 3, 4 | mp2an 710 | . 2 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
6 | subcl 10493 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) | |
7 | 6 | abs00ad 14250 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
8 | eqid 2761 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
9 | 8 | cnmetdval 22796 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
10 | 9 | eqcomd 2767 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) = (𝑥(abs ∘ − )𝑦)) |
11 | 10 | eqeq1d 2763 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥(abs ∘ − )𝑦) = 0)) |
12 | subeq0 10520 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) | |
13 | 7, 11, 12 | 3bitr3d 298 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) = 0 ↔ 𝑥 = 𝑦)) |
14 | abs3dif 14291 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦)))) | |
15 | abssub 14286 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑧)) = (abs‘(𝑧 − 𝑥))) | |
16 | 15 | oveq1d 6830 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
17 | 16 | 3adant2 1126 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
18 | 14, 17 | breqtrd 4831 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
19 | 9 | 3adant3 1127 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
20 | 8 | cnmetdval 22796 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
21 | 20 | 3adant3 1127 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
22 | 8 | cnmetdval 22796 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
23 | 22 | 3adant2 1126 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
24 | 21, 23 | oveq12d 6833 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
25 | 24 | 3coml 1122 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
26 | 18, 19, 25 | 3brtr4d 4837 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) ≤ ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦))) |
27 | 1, 5, 13, 26 | ismeti 22352 | 1 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 × cxp 5265 ∘ ccom 5271 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 ℝcr 10148 0cc0 10149 + caddc 10152 ≤ cle 10288 − cmin 10479 abscabs 14194 Metcme 19955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-sup 8516 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-seq 13017 df-exp 13076 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-met 19963 |
This theorem is referenced by: cnxmet 22798 cnfldms 22801 remet 22815 xrsdsre 22835 lebnumii 22987 cncmet 23340 cncms 23372 ovolctb 23479 dvlog2lem 24619 cnrrext 30385 cntotbnd 33927 iccbnd 33971 sblpnf 39030 |
Copyright terms: Public domain | W3C validator |