![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cnlnssadj | Structured version Visualization version GIF version |
Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnlnssadj | ⊢ (LinOp ∩ ContOp) ⊆ dom adjℎ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlnadj 29066 | . . . . 5 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) | |
2 | df-rex 2947 | . . . . 5 ⊢ (∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) ↔ ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)))) | |
3 | 1, 2 | sylib 208 | . . . 4 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)))) |
4 | inss1 3866 | . . . . . . . . . 10 ⊢ (LinOp ∩ ContOp) ⊆ LinOp | |
5 | 4 | sseli 3632 | . . . . . . . . 9 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ LinOp) |
6 | lnopf 28846 | . . . . . . . . 9 ⊢ (𝑦 ∈ LinOp → 𝑦: ℋ⟶ ℋ) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦: ℋ⟶ ℋ) |
8 | 7 | a1d 25 | . . . . . . 7 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → 𝑦: ℋ⟶ ℋ)) |
9 | 4 | sseli 3632 | . . . . . . . . . 10 ⊢ (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡 ∈ LinOp) |
10 | lnopf 28846 | . . . . . . . . . 10 ⊢ (𝑡 ∈ LinOp → 𝑡: ℋ⟶ ℋ) | |
11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ) |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ)) |
13 | 12 | adantrd 483 | . . . . . . 7 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → 𝑡: ℋ⟶ ℋ)) |
14 | eqcom 2658 | . . . . . . . . . . 11 ⊢ (((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) ↔ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧)) | |
15 | 14 | biimpi 206 | . . . . . . . . . 10 ⊢ (((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) → (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧)) |
16 | 15 | 2ralimi 2982 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧)) |
17 | adjsym 28820 | . . . . . . . . . 10 ⊢ ((𝑡: ℋ⟶ ℋ ∧ 𝑦: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) | |
18 | 11, 7, 17 | syl2anr 494 | . . . . . . . . 9 ⊢ ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
19 | 16, 18 | syl5ib 234 | . . . . . . . 8 ⊢ ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
20 | 19 | expimpd 628 | . . . . . . 7 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
21 | 8, 13, 20 | 3jcad 1262 | . . . . . 6 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧)))) |
22 | dfadj2 28872 | . . . . . . . 8 ⊢ adjℎ = {〈𝑢, 𝑣〉 ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))} | |
23 | 22 | eleq2i 2722 | . . . . . . 7 ⊢ (〈𝑦, 𝑡〉 ∈ adjℎ ↔ 〈𝑦, 𝑡〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))}) |
24 | vex 3234 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
25 | vex 3234 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
26 | feq1 6064 | . . . . . . . . 9 ⊢ (𝑢 = 𝑦 → (𝑢: ℋ⟶ ℋ ↔ 𝑦: ℋ⟶ ℋ)) | |
27 | fveq1 6228 | . . . . . . . . . . . 12 ⊢ (𝑢 = 𝑦 → (𝑢‘𝑧) = (𝑦‘𝑧)) | |
28 | 27 | oveq2d 6706 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑦 → (𝑥 ·ih (𝑢‘𝑧)) = (𝑥 ·ih (𝑦‘𝑧))) |
29 | 28 | eqeq1d 2653 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑦 → ((𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))) |
30 | 29 | 2ralbidv 3018 | . . . . . . . . 9 ⊢ (𝑢 = 𝑦 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))) |
31 | 26, 30 | 3anbi13d 1441 | . . . . . . . 8 ⊢ (𝑢 = 𝑦 → ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧)))) |
32 | feq1 6064 | . . . . . . . . 9 ⊢ (𝑣 = 𝑡 → (𝑣: ℋ⟶ ℋ ↔ 𝑡: ℋ⟶ ℋ)) | |
33 | fveq1 6228 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑡 → (𝑣‘𝑥) = (𝑡‘𝑥)) | |
34 | 33 | oveq1d 6705 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑡 → ((𝑣‘𝑥) ·ih 𝑧) = ((𝑡‘𝑥) ·ih 𝑧)) |
35 | 34 | eqeq2d 2661 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑡 → ((𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
36 | 35 | 2ralbidv 3018 | . . . . . . . . 9 ⊢ (𝑣 = 𝑡 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
37 | 32, 36 | 3anbi23d 1442 | . . . . . . . 8 ⊢ (𝑣 = 𝑡 → ((𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧)))) |
38 | 24, 25, 31, 37 | opelopab 5026 | . . . . . . 7 ⊢ (〈𝑦, 𝑡〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))} ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
39 | 23, 38 | bitr2i 265 | . . . . . 6 ⊢ ((𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧)) ↔ 〈𝑦, 𝑡〉 ∈ adjℎ) |
40 | 21, 39 | syl6ib 241 | . . . . 5 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → 〈𝑦, 𝑡〉 ∈ adjℎ)) |
41 | 40 | eximdv 1886 | . . . 4 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → (∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → ∃𝑡〈𝑦, 𝑡〉 ∈ adjℎ)) |
42 | 3, 41 | mpd 15 | . . 3 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡〈𝑦, 𝑡〉 ∈ adjℎ) |
43 | 24 | eldm2 5354 | . . 3 ⊢ (𝑦 ∈ dom adjℎ ↔ ∃𝑡〈𝑦, 𝑡〉 ∈ adjℎ) |
44 | 42, 43 | sylibr 224 | . 2 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ dom adjℎ) |
45 | 44 | ssriv 3640 | 1 ⊢ (LinOp ∩ ContOp) ⊆ dom adjℎ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ∩ cin 3606 ⊆ wss 3607 〈cop 4216 {copab 4745 dom cdm 5143 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℋchil 27904 ·ih csp 27907 ContOpccop 27931 LinOpclo 27932 adjℎcado 27940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cc 9295 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 ax-hilex 27984 ax-hfvadd 27985 ax-hvcom 27986 ax-hvass 27987 ax-hv0cl 27988 ax-hvaddid 27989 ax-hfvmul 27990 ax-hvmulid 27991 ax-hvmulass 27992 ax-hvdistr1 27993 ax-hvdistr2 27994 ax-hvmul0 27995 ax-hfi 28064 ax-his1 28067 ax-his2 28068 ax-his3 28069 ax-his4 28070 ax-hcompl 28187 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-omul 7610 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-cn 21079 df-cnp 21080 df-lm 21081 df-t1 21166 df-haus 21167 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-xms 22172 df-ms 22173 df-tms 22174 df-cfil 23099 df-cau 23100 df-cmet 23101 df-grpo 27475 df-gid 27476 df-ginv 27477 df-gdiv 27478 df-ablo 27527 df-vc 27542 df-nv 27575 df-va 27578 df-ba 27579 df-sm 27580 df-0v 27581 df-vs 27582 df-nmcv 27583 df-ims 27584 df-dip 27684 df-ssp 27705 df-ph 27796 df-cbn 27847 df-hnorm 27953 df-hba 27954 df-hvsub 27956 df-hlim 27957 df-hcau 27958 df-sh 28192 df-ch 28206 df-oc 28237 df-ch0 28238 df-shs 28295 df-pjh 28382 df-h0op 28735 df-nmop 28826 df-cnop 28827 df-lnop 28828 df-unop 28830 df-hmop 28831 df-nmfn 28832 df-nlfn 28833 df-cnfn 28834 df-lnfn 28835 df-adjh 28836 |
This theorem is referenced by: bdopssadj 29068 |
Copyright terms: Public domain | W3C validator |