HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem6 Structured version   Visualization version   GIF version

Theorem cnlnadjlem6 29059
Description: Lemma for cnlnadji 29063. 𝐹 is linear. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem6 𝐹 ∈ LinOp
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦   𝑤,𝐹   𝑇,𝑔,𝑣,𝑤,𝑦   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem6
Dummy variables 𝑓 𝑧 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.5 . . 3 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
2 cnlnadjlem.1 . . . 4 𝑇 ∈ LinOp
3 cnlnadjlem.2 . . . 4 𝑇 ∈ ContOp
4 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
5 cnlnadjlem.4 . . . 4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
62, 3, 4, 5cnlnadjlem3 29056 . . 3 (𝑦 ∈ ℋ → 𝐵 ∈ ℋ)
71, 6fmpti 6423 . 2 𝐹: ℋ⟶ ℋ
82lnopfi 28956 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
98ffvelrni 6398 . . . . . . . . 9 (𝑡 ∈ ℋ → (𝑇𝑡) ∈ ℋ)
109adantl 481 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
11 hvmulcl 27998 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
1211ad2antrr 762 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
13 simplr 807 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑧 ∈ ℋ)
14 his7 28075 . . . . . . . 8 (((𝑇𝑡) ∈ ℋ ∧ (𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
1510, 12, 13, 14syl3anc 1366 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
16 hvaddcl 27997 . . . . . . . . 9 (((𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
1711, 16sylan 487 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
182, 3, 4, 5, 1cnlnadjlem5 29058 . . . . . . . 8 ((((𝑥 · 𝑓) + 𝑧) ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
1917, 18sylan 487 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
20 simpll 805 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑥 ∈ ℂ)
219adantl 481 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
22 simplr 807 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑓 ∈ ℋ)
23 his5 28071 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑇𝑡) ∈ ℋ ∧ 𝑓 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
2420, 21, 22, 23syl3anc 1366 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
25 simpr 476 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
262, 3, 4, 5, 1cnlnadjlem4 29057 . . . . . . . . . . . . . 14 (𝑓 ∈ ℋ → (𝐹𝑓) ∈ ℋ)
2726ad2antlr 763 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑓) ∈ ℋ)
28 his5 28071 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑡 ∈ ℋ ∧ (𝐹𝑓) ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
2920, 25, 27, 28syl3anc 1366 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
302, 3, 4, 5, 1cnlnadjlem5 29058 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3130adantll 750 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3231oveq2d 6706 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
3329, 32eqtr4d 2688 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
3424, 33eqtr4d 2688 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
3534adantlr 751 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
362, 3, 4, 5, 1cnlnadjlem5 29058 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3736adantll 750 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3835, 37oveq12d 6708 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
39 simpr 476 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
40 hvmulcl 27998 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝐹𝑓) ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4126, 40sylan2 490 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4241ad2antrr 762 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
432, 3, 4, 5, 1cnlnadjlem4 29057 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝐹𝑧) ∈ ℋ)
4443ad2antlr 763 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑧) ∈ ℋ)
45 his7 28075 . . . . . . . . 9 ((𝑡 ∈ ℋ ∧ (𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4639, 42, 44, 45syl3anc 1366 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4738, 46eqtr4d 2688 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4815, 19, 473eqtr3d 2693 . . . . . 6 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4948ralrimiva 2995 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
502, 3, 4, 5, 1cnlnadjlem4 29057 . . . . . . 7 (((𝑥 · 𝑓) + 𝑧) ∈ ℋ → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
5117, 50syl 17 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
52 hvaddcl 27997 . . . . . . 7 (((𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
5341, 43, 52syl2an 493 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
54 hial2eq2 28092 . . . . . 6 (((𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5551, 53, 54syl2anc 694 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5649, 55mpbid 222 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5756ralrimiva 2995 . . 3 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5857rgen2 3004 . 2 𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))
59 ellnop 28845 . 2 (𝐹 ∈ LinOp ↔ (𝐹: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
607, 58, 59mpbir2an 975 1 𝐹 ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  cmpt 4762  wf 5922  cfv 5926  crio 6650  (class class class)co 6690  cc 9972   + caddc 9977   · cmul 9979  ccj 13880  chil 27904   + cva 27905   · csm 27906   ·ih csp 27907  ContOpccop 27931  LinOpclo 27932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070  ax-hcompl 28187
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-cn 21079  df-cnp 21080  df-lm 21081  df-t1 21166  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cfil 23099  df-cau 23100  df-cmet 23101  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ssp 27705  df-ph 27796  df-cbn 27847  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hlim 27957  df-hcau 27958  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-nmop 28826  df-cnop 28827  df-lnop 28828  df-nmfn 28832  df-nlfn 28833  df-cnfn 28834  df-lnfn 28835
This theorem is referenced by:  cnlnadjlem8  29061  cnlnadjlem9  29062
  Copyright terms: Public domain W3C validator