HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem5 Structured version   Visualization version   GIF version

Theorem cnlnadjlem5 29261
Description: Lemma for cnlnadji 29266. 𝐹 is an adjoint of 𝑇 (later, we will show it is unique). (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem5 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹𝐴)))
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦,𝐴   𝑤,𝐹   𝑇,𝑔,𝑣,𝑤,𝑦   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐶(𝑦,𝑤,𝑣,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem5
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2903 . . 3 𝑦𝐴
2 nfcv 2903 . . . 4 𝑦
3 nfcv 2903 . . . . . 6 𝑦𝑓
4 nfcv 2903 . . . . . 6 𝑦 ·ih
5 cnlnadjlem.5 . . . . . . . 8 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
6 nfmpt1 4900 . . . . . . . 8 𝑦(𝑦 ∈ ℋ ↦ 𝐵)
75, 6nfcxfr 2901 . . . . . . 7 𝑦𝐹
87, 1nffv 6361 . . . . . 6 𝑦(𝐹𝐴)
93, 4, 8nfov 6841 . . . . 5 𝑦(𝑓 ·ih (𝐹𝐴))
109nfeq2 2919 . . . 4 𝑦((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴))
112, 10nfral 3084 . . 3 𝑦𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴))
12 oveq2 6823 . . . . 5 (𝑦 = 𝐴 → ((𝑇𝑓) ·ih 𝑦) = ((𝑇𝑓) ·ih 𝐴))
13 fveq2 6354 . . . . . 6 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
1413oveq2d 6831 . . . . 5 (𝑦 = 𝐴 → (𝑓 ·ih (𝐹𝑦)) = (𝑓 ·ih (𝐹𝐴)))
1512, 14eqeq12d 2776 . . . 4 (𝑦 = 𝐴 → (((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦)) ↔ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴))))
1615ralbidv 3125 . . 3 (𝑦 = 𝐴 → (∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦)) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴))))
17 cnlnadjlem.4 . . . . . . 7 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
18 riotaex 6780 . . . . . . 7 (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ∈ V
1917, 18eqeltri 2836 . . . . . 6 𝐵 ∈ V
205fvmpt2 6455 . . . . . 6 ((𝑦 ∈ ℋ ∧ 𝐵 ∈ V) → (𝐹𝑦) = 𝐵)
2119, 20mpan2 709 . . . . 5 (𝑦 ∈ ℋ → (𝐹𝑦) = 𝐵)
22 fveq2 6354 . . . . . . . . . . . . 13 (𝑣 = 𝑓 → (𝑇𝑣) = (𝑇𝑓))
2322oveq1d 6830 . . . . . . . . . . . 12 (𝑣 = 𝑓 → ((𝑇𝑣) ·ih 𝑦) = ((𝑇𝑓) ·ih 𝑦))
24 oveq1 6822 . . . . . . . . . . . 12 (𝑣 = 𝑓 → (𝑣 ·ih 𝑤) = (𝑓 ·ih 𝑤))
2523, 24eqeq12d 2776 . . . . . . . . . . 11 (𝑣 = 𝑓 → (((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)))
2625cbvralv 3311 . . . . . . . . . 10 (∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))
2726a1i 11 . . . . . . . . 9 (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)))
28 cnlnadjlem.1 . . . . . . . . . . . 12 𝑇 ∈ LinOp
29 cnlnadjlem.2 . . . . . . . . . . . 12 𝑇 ∈ ContOp
30 cnlnadjlem.3 . . . . . . . . . . . 12 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
3128, 29, 30cnlnadjlem1 29257 . . . . . . . . . . 11 (𝑓 ∈ ℋ → (𝐺𝑓) = ((𝑇𝑓) ·ih 𝑦))
3231eqeq1d 2763 . . . . . . . . . 10 (𝑓 ∈ ℋ → ((𝐺𝑓) = (𝑓 ·ih 𝑤) ↔ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)))
3332ralbiia 3118 . . . . . . . . 9 (∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))
3427, 33syl6bbr 278 . . . . . . . 8 (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)))
3534riotabiia 6793 . . . . . . 7 (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) = (𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤))
3617, 35eqtri 2783 . . . . . 6 𝐵 = (𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤))
3728, 29, 30cnlnadjlem2 29258 . . . . . . . 8 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
38 elin 3940 . . . . . . . 8 (𝐺 ∈ (LinFn ∩ ContFn) ↔ (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
3937, 38sylibr 224 . . . . . . 7 (𝑦 ∈ ℋ → 𝐺 ∈ (LinFn ∩ ContFn))
40 riesz4 29254 . . . . . . 7 (𝐺 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤))
41 riotacl2 6789 . . . . . . 7 (∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤) → (𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)})
4239, 40, 413syl 18 . . . . . 6 (𝑦 ∈ ℋ → (𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)})
4336, 42syl5eqel 2844 . . . . 5 (𝑦 ∈ ℋ → 𝐵 ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)})
4421, 43eqeltrd 2840 . . . 4 (𝑦 ∈ ℋ → (𝐹𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)})
45 oveq2 6823 . . . . . . . . 9 (𝑤 = (𝐹𝑦) → (𝑓 ·ih 𝑤) = (𝑓 ·ih (𝐹𝑦)))
4645eqeq2d 2771 . . . . . . . 8 (𝑤 = (𝐹𝑦) → (((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦))))
4746ralbidv 3125 . . . . . . 7 (𝑤 = (𝐹𝑦) → (∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦))))
4833, 47syl5bb 272 . . . . . 6 (𝑤 = (𝐹𝑦) → (∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦))))
4948elrab 3505 . . . . 5 ((𝐹𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)} ↔ ((𝐹𝑦) ∈ ℋ ∧ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦))))
5049simprbi 483 . . . 4 ((𝐹𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)} → ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦)))
5144, 50syl 17 . . 3 (𝑦 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦)))
521, 11, 16, 51vtoclgaf 3412 . 2 (𝐴 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴)))
53 fveq2 6354 . . . . 5 (𝑓 = 𝐶 → (𝑇𝑓) = (𝑇𝐶))
5453oveq1d 6830 . . . 4 (𝑓 = 𝐶 → ((𝑇𝑓) ·ih 𝐴) = ((𝑇𝐶) ·ih 𝐴))
55 oveq1 6822 . . . 4 (𝑓 = 𝐶 → (𝑓 ·ih (𝐹𝐴)) = (𝐶 ·ih (𝐹𝐴)))
5654, 55eqeq12d 2776 . . 3 (𝑓 = 𝐶 → (((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴)) ↔ ((𝑇𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹𝐴))))
5756rspccva 3449 . 2 ((∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴)) ∧ 𝐶 ∈ ℋ) → ((𝑇𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹𝐴)))
5852, 57sylan 489 1 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wral 3051  ∃!wreu 3053  {crab 3055  Vcvv 3341  cin 3715  cmpt 4882  cfv 6050  crio 6775  (class class class)co 6815  chil 28107   ·ih csp 28110  ContOpccop 28134  LinOpclo 28135  ContFnccnfn 28141  LinFnclf 28142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cc 9470  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229  ax-hilex 28187  ax-hfvadd 28188  ax-hvcom 28189  ax-hvass 28190  ax-hv0cl 28191  ax-hvaddid 28192  ax-hfvmul 28193  ax-hvmulid 28194  ax-hvmulass 28195  ax-hvdistr1 28196  ax-hvdistr2 28197  ax-hvmul0 28198  ax-hfi 28267  ax-his1 28270  ax-his2 28271  ax-his3 28272  ax-his4 28273  ax-hcompl 28390
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-omul 7736  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-acn 8979  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-rlim 14440  df-sum 14637  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-fbas 19966  df-fg 19967  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-nei 21125  df-cn 21254  df-cnp 21255  df-lm 21256  df-t1 21341  df-haus 21342  df-tx 21588  df-hmeo 21781  df-fil 21872  df-fm 21964  df-flim 21965  df-flf 21966  df-xms 22347  df-ms 22348  df-tms 22349  df-cfil 23274  df-cau 23275  df-cmet 23276  df-grpo 27678  df-gid 27679  df-ginv 27680  df-gdiv 27681  df-ablo 27730  df-vc 27745  df-nv 27778  df-va 27781  df-ba 27782  df-sm 27783  df-0v 27784  df-vs 27785  df-nmcv 27786  df-ims 27787  df-dip 27887  df-ssp 27908  df-ph 27999  df-cbn 28050  df-hnorm 28156  df-hba 28157  df-hvsub 28159  df-hlim 28160  df-hcau 28161  df-sh 28395  df-ch 28409  df-oc 28440  df-ch0 28441  df-nmop 29029  df-cnop 29030  df-lnop 29031  df-nmfn 29035  df-nlfn 29036  df-cnfn 29037  df-lnfn 29038
This theorem is referenced by:  cnlnadjlem6  29262  cnlnadjlem7  29263  cnlnadjlem9  29265
  Copyright terms: Public domain W3C validator