![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cnlnadjlem5 | Structured version Visualization version GIF version |
Description: Lemma for cnlnadji 29266. 𝐹 is an adjoint of 𝑇 (later, we will show it is unique). (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp |
cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp |
cnlnadjlem.3 | ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) |
cnlnadjlem.4 | ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) |
cnlnadjlem.5 | ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) |
Ref | Expression |
---|---|
cnlnadjlem5 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑦 ℋ | |
3 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑦𝑓 | |
4 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑦 ·ih | |
5 | cnlnadjlem.5 | . . . . . . . 8 ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) | |
6 | nfmpt1 4900 | . . . . . . . 8 ⊢ Ⅎ𝑦(𝑦 ∈ ℋ ↦ 𝐵) | |
7 | 5, 6 | nfcxfr 2901 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 |
8 | 7, 1 | nffv 6361 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝐴) |
9 | 3, 4, 8 | nfov 6841 | . . . . 5 ⊢ Ⅎ𝑦(𝑓 ·ih (𝐹‘𝐴)) |
10 | 9 | nfeq2 2919 | . . . 4 ⊢ Ⅎ𝑦((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) |
11 | 2, 10 | nfral 3084 | . . 3 ⊢ Ⅎ𝑦∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) |
12 | oveq2 6823 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑇‘𝑓) ·ih 𝑦) = ((𝑇‘𝑓) ·ih 𝐴)) | |
13 | fveq2 6354 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
14 | 13 | oveq2d 6831 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑓 ·ih (𝐹‘𝑦)) = (𝑓 ·ih (𝐹‘𝐴))) |
15 | 12, 14 | eqeq12d 2776 | . . . 4 ⊢ (𝑦 = 𝐴 → (((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)) ↔ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)))) |
16 | 15 | ralbidv 3125 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)))) |
17 | cnlnadjlem.4 | . . . . . . 7 ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) | |
18 | riotaex 6780 | . . . . . . 7 ⊢ (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ∈ V | |
19 | 17, 18 | eqeltri 2836 | . . . . . 6 ⊢ 𝐵 ∈ V |
20 | 5 | fvmpt2 6455 | . . . . . 6 ⊢ ((𝑦 ∈ ℋ ∧ 𝐵 ∈ V) → (𝐹‘𝑦) = 𝐵) |
21 | 19, 20 | mpan2 709 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (𝐹‘𝑦) = 𝐵) |
22 | fveq2 6354 | . . . . . . . . . . . . 13 ⊢ (𝑣 = 𝑓 → (𝑇‘𝑣) = (𝑇‘𝑓)) | |
23 | 22 | oveq1d 6830 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑓 → ((𝑇‘𝑣) ·ih 𝑦) = ((𝑇‘𝑓) ·ih 𝑦)) |
24 | oveq1 6822 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑓 → (𝑣 ·ih 𝑤) = (𝑓 ·ih 𝑤)) | |
25 | 23, 24 | eqeq12d 2776 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑓 → (((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))) |
26 | 25 | cbvralv 3311 | . . . . . . . . . 10 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)) |
27 | 26 | a1i 11 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))) |
28 | cnlnadjlem.1 | . . . . . . . . . . . 12 ⊢ 𝑇 ∈ LinOp | |
29 | cnlnadjlem.2 | . . . . . . . . . . . 12 ⊢ 𝑇 ∈ ContOp | |
30 | cnlnadjlem.3 | . . . . . . . . . . . 12 ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) | |
31 | 28, 29, 30 | cnlnadjlem1 29257 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ ℋ → (𝐺‘𝑓) = ((𝑇‘𝑓) ·ih 𝑦)) |
32 | 31 | eqeq1d 2763 | . . . . . . . . . 10 ⊢ (𝑓 ∈ ℋ → ((𝐺‘𝑓) = (𝑓 ·ih 𝑤) ↔ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))) |
33 | 32 | ralbiia 3118 | . . . . . . . . 9 ⊢ (∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)) |
34 | 27, 33 | syl6bbr 278 | . . . . . . . 8 ⊢ (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤))) |
35 | 34 | riotabiia 6793 | . . . . . . 7 ⊢ (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) = (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) |
36 | 17, 35 | eqtri 2783 | . . . . . 6 ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) |
37 | 28, 29, 30 | cnlnadjlem2 29258 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) |
38 | elin 3940 | . . . . . . . 8 ⊢ (𝐺 ∈ (LinFn ∩ ContFn) ↔ (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) | |
39 | 37, 38 | sylibr 224 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → 𝐺 ∈ (LinFn ∩ ContFn)) |
40 | riesz4 29254 | . . . . . . 7 ⊢ (𝐺 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) | |
41 | riotacl2 6789 | . . . . . . 7 ⊢ (∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤) → (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) | |
42 | 39, 40, 41 | 3syl 18 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) |
43 | 36, 42 | syl5eqel 2844 | . . . . 5 ⊢ (𝑦 ∈ ℋ → 𝐵 ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) |
44 | 21, 43 | eqeltrd 2840 | . . . 4 ⊢ (𝑦 ∈ ℋ → (𝐹‘𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) |
45 | oveq2 6823 | . . . . . . . . 9 ⊢ (𝑤 = (𝐹‘𝑦) → (𝑓 ·ih 𝑤) = (𝑓 ·ih (𝐹‘𝑦))) | |
46 | 45 | eqeq2d 2771 | . . . . . . . 8 ⊢ (𝑤 = (𝐹‘𝑦) → (((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
47 | 46 | ralbidv 3125 | . . . . . . 7 ⊢ (𝑤 = (𝐹‘𝑦) → (∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
48 | 33, 47 | syl5bb 272 | . . . . . 6 ⊢ (𝑤 = (𝐹‘𝑦) → (∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
49 | 48 | elrab 3505 | . . . . 5 ⊢ ((𝐹‘𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)} ↔ ((𝐹‘𝑦) ∈ ℋ ∧ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
50 | 49 | simprbi 483 | . . . 4 ⊢ ((𝐹‘𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)} → ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦))) |
51 | 44, 50 | syl 17 | . . 3 ⊢ (𝑦 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦))) |
52 | 1, 11, 16, 51 | vtoclgaf 3412 | . 2 ⊢ (𝐴 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴))) |
53 | fveq2 6354 | . . . . 5 ⊢ (𝑓 = 𝐶 → (𝑇‘𝑓) = (𝑇‘𝐶)) | |
54 | 53 | oveq1d 6830 | . . . 4 ⊢ (𝑓 = 𝐶 → ((𝑇‘𝑓) ·ih 𝐴) = ((𝑇‘𝐶) ·ih 𝐴)) |
55 | oveq1 6822 | . . . 4 ⊢ (𝑓 = 𝐶 → (𝑓 ·ih (𝐹‘𝐴)) = (𝐶 ·ih (𝐹‘𝐴))) | |
56 | 54, 55 | eqeq12d 2776 | . . 3 ⊢ (𝑓 = 𝐶 → (((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) ↔ ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴)))) |
57 | 56 | rspccva 3449 | . 2 ⊢ ((∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) |
58 | 52, 57 | sylan 489 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∀wral 3051 ∃!wreu 3053 {crab 3055 Vcvv 3341 ∩ cin 3715 ↦ cmpt 4882 ‘cfv 6050 ℩crio 6775 (class class class)co 6815 ℋchil 28107 ·ih csp 28110 ContOpccop 28134 LinOpclo 28135 ContFnccnfn 28141 LinFnclf 28142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cc 9470 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 ax-mulf 10229 ax-hilex 28187 ax-hfvadd 28188 ax-hvcom 28189 ax-hvass 28190 ax-hv0cl 28191 ax-hvaddid 28192 ax-hfvmul 28193 ax-hvmulid 28194 ax-hvmulass 28195 ax-hvdistr1 28196 ax-hvdistr2 28197 ax-hvmul0 28198 ax-hfi 28267 ax-his1 28270 ax-his2 28271 ax-his3 28272 ax-his4 28273 ax-hcompl 28390 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-supp 7466 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-omul 7736 df-er 7914 df-map 8028 df-pm 8029 df-ixp 8078 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fsupp 8444 df-fi 8485 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-acn 8979 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-q 12003 df-rp 12047 df-xneg 12160 df-xadd 12161 df-xmul 12162 df-ioo 12393 df-ico 12395 df-icc 12396 df-fz 12541 df-fzo 12681 df-fl 12808 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-clim 14439 df-rlim 14440 df-sum 14637 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-starv 16179 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-hom 16189 df-cco 16190 df-rest 16306 df-topn 16307 df-0g 16325 df-gsum 16326 df-topgen 16327 df-pt 16328 df-prds 16331 df-xrs 16385 df-qtop 16390 df-imas 16391 df-xps 16393 df-mre 16469 df-mrc 16470 df-acs 16472 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-submnd 17558 df-mulg 17763 df-cntz 17971 df-cmn 18416 df-psmet 19961 df-xmet 19962 df-met 19963 df-bl 19964 df-mopn 19965 df-fbas 19966 df-fg 19967 df-cnfld 19970 df-top 20922 df-topon 20939 df-topsp 20960 df-bases 20973 df-cld 21046 df-ntr 21047 df-cls 21048 df-nei 21125 df-cn 21254 df-cnp 21255 df-lm 21256 df-t1 21341 df-haus 21342 df-tx 21588 df-hmeo 21781 df-fil 21872 df-fm 21964 df-flim 21965 df-flf 21966 df-xms 22347 df-ms 22348 df-tms 22349 df-cfil 23274 df-cau 23275 df-cmet 23276 df-grpo 27678 df-gid 27679 df-ginv 27680 df-gdiv 27681 df-ablo 27730 df-vc 27745 df-nv 27778 df-va 27781 df-ba 27782 df-sm 27783 df-0v 27784 df-vs 27785 df-nmcv 27786 df-ims 27787 df-dip 27887 df-ssp 27908 df-ph 27999 df-cbn 28050 df-hnorm 28156 df-hba 28157 df-hvsub 28159 df-hlim 28160 df-hcau 28161 df-sh 28395 df-ch 28409 df-oc 28440 df-ch0 28441 df-nmop 29029 df-cnop 29030 df-lnop 29031 df-nmfn 29035 df-nlfn 29036 df-cnfn 29037 df-lnfn 29038 |
This theorem is referenced by: cnlnadjlem6 29262 cnlnadjlem7 29263 cnlnadjlem9 29265 |
Copyright terms: Public domain | W3C validator |