MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnlmod Structured version   Visualization version   GIF version

Theorem cnlmod 23140
Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.)
Hypothesis
Ref Expression
cnlmod.w 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
Assertion
Ref Expression
cnlmod 𝑊 ∈ LMod

Proof of Theorem cnlmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10224 . 2 0 ∈ ℂ
2 cnlmod.w . . . . . 6 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
32cnlmodlem1 23136 . . . . 5 (Base‘𝑊) = ℂ
43eqcomi 2769 . . . 4 ℂ = (Base‘𝑊)
54a1i 11 . . 3 (0 ∈ ℂ → ℂ = (Base‘𝑊))
62cnlmodlem2 23137 . . . . 5 (+g𝑊) = +
76eqcomi 2769 . . . 4 + = (+g𝑊)
87a1i 11 . . 3 (0 ∈ ℂ → + = (+g𝑊))
9 addcl 10210 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1093adant1 1125 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
11 addass 10215 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211adantl 473 . . 3 ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
13 id 22 . . 3 (0 ∈ ℂ → 0 ∈ ℂ)
14 addid2 10411 . . . 4 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
1514adantl 473 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
16 negcl 10473 . . . 4 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
1716adantl 473 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ)
18 id 22 . . . . . 6 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
1916, 18addcomd 10430 . . . . 5 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
2019adantl 473 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
21 negid 10520 . . . . 5 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
2221adantl 473 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0)
2320, 22eqtrd 2794 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0)
245, 8, 10, 12, 13, 15, 17, 23isgrpd 17645 . 2 (0 ∈ ℂ → 𝑊 ∈ Grp)
254a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘𝑊))
267a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g𝑊))
272cnlmodlem3 23138 . . . . 5 (Scalar‘𝑊) = ℂfld
2827eqcomi 2769 . . . 4 fld = (Scalar‘𝑊)
2928a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊))
302cnlmod4 23139 . . . . 5 ( ·𝑠𝑊) = ·
3130eqcomi 2769 . . . 4 · = ( ·𝑠𝑊)
3231a1i 11 . . 3 (𝑊 ∈ Grp → · = ( ·𝑠𝑊))
33 cnfldbas 19952 . . . 4 ℂ = (Base‘ℂfld)
3433a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘ℂfld))
35 cnfldadd 19953 . . . 4 + = (+g‘ℂfld)
3635a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g‘ℂfld))
37 cnfldmul 19954 . . . 4 · = (.r‘ℂfld)
3837a1i 11 . . 3 (𝑊 ∈ Grp → · = (.r‘ℂfld))
39 cnfld1 19973 . . . 4 1 = (1r‘ℂfld)
4039a1i 11 . . 3 (𝑊 ∈ Grp → 1 = (1r‘ℂfld))
41 cnring 19970 . . . 4 fld ∈ Ring
4241a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld ∈ Ring)
43 id 22 . . 3 (𝑊 ∈ Grp → 𝑊 ∈ Grp)
44 mulcl 10212 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
45443adant1 1125 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
46 adddi 10217 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4746adantl 473 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
48 adddir 10223 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4948adantl 473 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
50 mulass 10216 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
5150adantl 473 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
52 mulid2 10230 . . . 4 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
5352adantl 473 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥)
5425, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53islmodd 19071 . 2 (𝑊 ∈ Grp → 𝑊 ∈ LMod)
551, 24, 54mp2b 10 1 𝑊 ∈ LMod
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3a 1072   = wceq 1632  wcel 2139  cun 3713  {cpr 4323  cop 4327  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  -cneg 10459  ndxcnx 16056  Basecbs 16059  +gcplusg 16143  .rcmulr 16144  Scalarcsca 16146   ·𝑠 cvsca 16147  Grpcgrp 17623  1rcur 18701  Ringcrg 18747  LModclmod 19065  fldccnfld 19948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-lmod 19067  df-cnfld 19949
This theorem is referenced by:  cnstrcvs  23141
  Copyright terms: Public domain W3C validator