![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cniccibl | Structured version Visualization version GIF version |
Description: A continuous function on a closed bounded interval is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
Ref | Expression |
---|---|
cniccibl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccmbl 23505 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) | |
2 | cnmbf 23596 | . . 3 ⊢ (((𝐴[,]𝐵) ∈ dom vol ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ MblFn) | |
3 | 1, 2 | stoic3 1838 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ MblFn) |
4 | simp3 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | |
5 | cncff 22868 | . . . . 5 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) | |
6 | fdm 6200 | . . . . 5 ⊢ (𝐹:(𝐴[,]𝐵)⟶ℂ → dom 𝐹 = (𝐴[,]𝐵)) | |
7 | 4, 5, 6 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → dom 𝐹 = (𝐴[,]𝐵)) |
8 | 7 | fveq2d 6344 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (vol‘dom 𝐹) = (vol‘(𝐴[,]𝐵))) |
9 | iccvolcl 23506 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,]𝐵)) ∈ ℝ) | |
10 | 9 | 3adant3 1124 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (vol‘(𝐴[,]𝐵)) ∈ ℝ) |
11 | 8, 10 | eqeltrd 2827 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (vol‘dom 𝐹) ∈ ℝ) |
12 | cniccbdd 23401 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) | |
13 | 7 | raleqdv 3271 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
14 | 13 | rexbidv 3178 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
15 | 12, 14 | mpbird 247 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
16 | bddibl 23776 | . 2 ⊢ ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1) | |
17 | 3, 11, 15, 16 | syl3anc 1463 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ∀wral 3038 ∃wrex 3039 class class class wbr 4792 dom cdm 5254 ⟶wf 6033 ‘cfv 6037 (class class class)co 6801 ℂcc 10097 ℝcr 10098 ≤ cle 10238 [,]cicc 12342 abscabs 14144 –cn→ccncf 22851 volcvol 23403 MblFncmbf 23553 𝐿1cibl 23556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 ax-cc 9420 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 ax-addf 10178 ax-mulf 10179 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-fal 1626 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-iin 4663 df-disj 4761 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-se 5214 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-isom 6046 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-of 7050 df-ofr 7051 df-om 7219 df-1st 7321 df-2nd 7322 df-supp 7452 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-omul 7722 df-er 7899 df-map 8013 df-pm 8014 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8429 df-fi 8470 df-sup 8501 df-inf 8502 df-oi 8568 df-card 8926 df-acn 8929 df-cda 9153 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-7 11247 df-8 11248 df-9 11249 df-n0 11456 df-z 11541 df-dec 11657 df-uz 11851 df-q 11953 df-rp 11997 df-xneg 12110 df-xadd 12111 df-xmul 12112 df-ioo 12343 df-ioc 12344 df-ico 12345 df-icc 12346 df-fz 12491 df-fzo 12631 df-fl 12758 df-mod 12834 df-seq 12967 df-exp 13026 df-hash 13283 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-limsup 14372 df-clim 14389 df-rlim 14390 df-sum 14587 df-struct 16032 df-ndx 16033 df-slot 16034 df-base 16036 df-sets 16037 df-ress 16038 df-plusg 16127 df-mulr 16128 df-starv 16129 df-sca 16130 df-vsca 16131 df-ip 16132 df-tset 16133 df-ple 16134 df-ds 16137 df-unif 16138 df-hom 16139 df-cco 16140 df-rest 16256 df-topn 16257 df-0g 16275 df-gsum 16276 df-topgen 16277 df-pt 16278 df-prds 16281 df-xrs 16335 df-qtop 16340 df-imas 16341 df-xps 16343 df-mre 16419 df-mrc 16420 df-acs 16422 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-submnd 17508 df-mulg 17713 df-cntz 17921 df-cmn 18366 df-psmet 19911 df-xmet 19912 df-met 19913 df-bl 19914 df-mopn 19915 df-cnfld 19920 df-top 20872 df-topon 20889 df-topsp 20910 df-bases 20923 df-cn 21204 df-cnp 21205 df-cmp 21363 df-tx 21538 df-hmeo 21731 df-xms 22297 df-ms 22298 df-tms 22299 df-cncf 22853 df-ovol 23404 df-vol 23405 df-mbf 23558 df-itg1 23559 df-itg2 23560 df-ibl 23561 df-0p 23607 |
This theorem is referenced by: itgsubstlem 23981 iblidicc 30950 fdvposlt 30957 fdvposle 30959 circlemeth 30998 itgpowd 38271 arearect 38272 areaquad 38273 lhe4.4ex1a 38999 itgsin0pilem1 40637 ibliccsinexp 40638 itgsinexplem1 40641 itgsinexp 40642 itgcoscmulx 40657 itgsincmulx 40662 itgioocnicc 40665 iblcncfioo 40666 dirkeritg 40791 fourierdlem95 40890 sqwvfoura 40917 sqwvfourb 40918 etransclem18 40941 |
Copyright terms: Public domain | W3C validator |