Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheiborlem Structured version   Visualization version   GIF version

Theorem cnheiborlem 22800
 Description: Lemma for cnheibor 22801. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpen‘ℂfld)
cnheibor.3 𝑇 = (𝐽t 𝑋)
cnheibor.4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnheibor.5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
Assertion
Ref Expression
cnheiborlem ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑅   𝑥,𝑦,𝑧,𝑇   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem cnheiborlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . 5 𝐽 = (TopOpen‘ℂfld)
21cnfldtop 22634 . . . 4 𝐽 ∈ Top
3 cnheibor.4 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
43cnref1o 11865 . . . . . . . . 9 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
5 f1ofn 6176 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹 Fn (ℝ × ℝ))
6 elpreima 6377 . . . . . . . . 9 (𝐹 Fn (ℝ × ℝ) → (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)))
74, 5, 6mp2b 10 . . . . . . . 8 (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋))
8 1st2nd2 7249 . . . . . . . . . . 11 (𝑢 ∈ (ℝ × ℝ) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
98ad2antrl 764 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
10 xp1st 7242 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (1st𝑢) ∈ ℝ)
1110ad2antrl 764 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℝ)
1211recnd 10106 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℂ)
1312abscld 14219 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ∈ ℝ)
141cnfldtopon 22633 . . . . . . . . . . . . . . . . . . . . 21 𝐽 ∈ (TopOn‘ℂ)
1514toponunii 20769 . . . . . . . . . . . . . . . . . . . 20 ℂ = 𝐽
1615cldss 20881 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ (Clsd‘𝐽) → 𝑋 ⊆ ℂ)
1716adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ℂ)
1817adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑋 ⊆ ℂ)
19 simprr 811 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ 𝑋)
2018, 19sseldd 3637 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ ℂ)
2120abscld 14219 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ∈ ℝ)
22 simplrl 817 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑅 ∈ ℝ)
23 simprl 809 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ (ℝ × ℝ))
24 f1ocnvfv1 6572 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ 𝑢 ∈ (ℝ × ℝ)) → (𝐹‘(𝐹𝑢)) = 𝑢)
254, 23, 24sylancr 696 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = 𝑢)
26 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℜ‘𝑧) = (ℜ‘(𝐹𝑢)))
27 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℑ‘𝑧) = (ℑ‘(𝐹𝑢)))
2826, 27opeq12d 4441 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝐹𝑢) → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
293cnrecnv 13949 . . . . . . . . . . . . . . . . . . . . . 22 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
30 opex 4962 . . . . . . . . . . . . . . . . . . . . . 22 ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩ ∈ V
3128, 29, 30fvmpt 6321 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑢) ∈ ℂ → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3220, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3325, 32eqtr3d 2687 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3433fveq2d 6233 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
35 fvex 6239 . . . . . . . . . . . . . . . . . . 19 (ℜ‘(𝐹𝑢)) ∈ V
36 fvex 6239 . . . . . . . . . . . . . . . . . . 19 (ℑ‘(𝐹𝑢)) ∈ V
3735, 36op1st 7218 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℜ‘(𝐹𝑢))
3834, 37syl6eq 2701 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (ℜ‘(𝐹𝑢)))
3938fveq2d 6233 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) = (abs‘(ℜ‘(𝐹𝑢))))
40 absrele 14092 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4120, 40syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4239, 41eqbrtrd 4707 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ (abs‘(𝐹𝑢)))
43 simplrr 818 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)
44 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐹𝑢) → (abs‘𝑧) = (abs‘(𝐹𝑢)))
4544breq1d 4695 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹𝑢) → ((abs‘𝑧) ≤ 𝑅 ↔ (abs‘(𝐹𝑢)) ≤ 𝑅))
4645rspcv 3336 . . . . . . . . . . . . . . . 16 ((𝐹𝑢) ∈ 𝑋 → (∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅 → (abs‘(𝐹𝑢)) ≤ 𝑅))
4719, 43, 46sylc 65 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ≤ 𝑅)
4813, 21, 22, 42, 47letrd 10232 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ 𝑅)
4911, 22absled 14213 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(1st𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5048, 49mpbid 222 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅))
5150simpld 474 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (1st𝑢))
5250simprd 478 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ≤ 𝑅)
53 renegcl 10382 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
5422, 53syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ∈ ℝ)
55 elicc2 12276 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5654, 22, 55syl2anc 694 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5711, 51, 52, 56mpbir3and 1264 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ (-𝑅[,]𝑅))
58 xp2nd 7243 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (2nd𝑢) ∈ ℝ)
5958ad2antrl 764 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℝ)
6059recnd 10106 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℂ)
6160abscld 14219 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ∈ ℝ)
6233fveq2d 6233 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
6335, 36op2nd 7219 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℑ‘(𝐹𝑢))
6462, 63syl6eq 2701 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (ℑ‘(𝐹𝑢)))
6564fveq2d 6233 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) = (abs‘(ℑ‘(𝐹𝑢))))
66 absimle 14093 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6720, 66syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6865, 67eqbrtrd 4707 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ (abs‘(𝐹𝑢)))
6961, 21, 22, 68, 47letrd 10232 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ 𝑅)
7059, 22absled 14213 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(2nd𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7169, 70mpbid 222 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅))
7271simpld 474 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (2nd𝑢))
7371simprd 478 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ≤ 𝑅)
74 elicc2 12276 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7554, 22, 74syl2anc 694 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7659, 72, 73, 75mpbir3and 1264 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ (-𝑅[,]𝑅))
7757, 76opelxpd 5183 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ⟨(1st𝑢), (2nd𝑢)⟩ ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
789, 77eqeltrd 2730 . . . . . . . . 9 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
7978ex 449 . . . . . . . 8 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
807, 79syl5bi 232 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝑢 ∈ (𝐹𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
8180ssrdv 3642 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
82 f1ofun 6177 . . . . . . . 8 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → Fun 𝐹)
834, 82ax-mp 5 . . . . . . 7 Fun 𝐹
84 f1ofo 6182 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)–onto→ℂ)
85 forn 6156 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–onto→ℂ → ran 𝐹 = ℂ)
864, 84, 85mp2b 10 . . . . . . . 8 ran 𝐹 = ℂ
8717, 86syl6sseqr 3685 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ran 𝐹)
88 funimass1 6009 . . . . . . 7 ((Fun 𝐹𝑋 ⊆ ran 𝐹) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
8983, 87, 88sylancr 696 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
9081, 89mpd 15 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
91 cnheibor.5 . . . . 5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
9290, 91syl6sseqr 3685 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋𝑌)
93 eqid 2651 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
943, 93, 1cnrehmeo 22799 . . . . . . 7 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽)
95 imaexg 7145 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) → (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V)
9694, 95ax-mp 5 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V
9791, 96eqeltri 2726 . . . . 5 𝑌 ∈ V
9897a1i 11 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑌 ∈ V)
99 restabs 21017 . . . 4 ((𝐽 ∈ Top ∧ 𝑋𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
1002, 92, 98, 99mp3an2i 1469 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
101 cnheibor.3 . . 3 𝑇 = (𝐽t 𝑋)
102100, 101syl6eqr 2703 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = 𝑇)
10391oveq2i 6701 . . . . 5 (𝐽t 𝑌) = (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
104 ishmeo 21610 . . . . . . . 8 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) ↔ (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,))))))
10594, 104mpbi 220 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,)))))
106105simpli 473 . . . . . 6 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽)
107 iccssre 12293 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
10853, 107mpancom 704 . . . . . . . . . 10 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
1091, 93rerest 22654 . . . . . . . . . 10 ((-𝑅[,]𝑅) ⊆ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
110108, 109syl 17 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
111110, 110oveq12d 6708 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
112 retop 22612 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
113 ovex 6718 . . . . . . . . 9 (-𝑅[,]𝑅) ∈ V
114 txrest 21482 . . . . . . . . 9 ((((topGen‘ran (,)) ∈ Top ∧ (topGen‘ran (,)) ∈ Top) ∧ ((-𝑅[,]𝑅) ∈ V ∧ (-𝑅[,]𝑅) ∈ V)) → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
115112, 112, 113, 113, 114mp4an 709 . . . . . . . 8 (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
116111, 115syl6eqr 2703 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
117 eqid 2651 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))
11893, 117icccmp 22675 . . . . . . . . . 10 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
11953, 118mpancom 704 . . . . . . . . 9 (𝑅 ∈ ℝ → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
120110, 119eqeltrd 2730 . . . . . . . 8 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) ∈ Comp)
121 txcmp 21494 . . . . . . . 8 (((𝐽t (-𝑅[,]𝑅)) ∈ Comp ∧ (𝐽t (-𝑅[,]𝑅)) ∈ Comp) → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
122120, 120, 121syl2anc 694 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
123116, 122eqeltrrd 2731 . . . . . 6 (𝑅 ∈ ℝ → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp)
124 imacmp 21248 . . . . . 6 ((𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp) → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
125106, 123, 124sylancr 696 . . . . 5 (𝑅 ∈ ℝ → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
126103, 125syl5eqel 2734 . . . 4 (𝑅 ∈ ℝ → (𝐽t 𝑌) ∈ Comp)
127126ad2antrl 764 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐽t 𝑌) ∈ Comp)
128 imassrn 5512 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ⊆ ran 𝐹
12991, 128eqsstri 3668 . . . . 5 𝑌 ⊆ ran 𝐹
130 f1of 6175 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)⟶ℂ)
131 frn 6091 . . . . . 6 (𝐹:(ℝ × ℝ)⟶ℂ → ran 𝐹 ⊆ ℂ)
1324, 130, 131mp2b 10 . . . . 5 ran 𝐹 ⊆ ℂ
133129, 132sstri 3645 . . . 4 𝑌 ⊆ ℂ
134 simpl 472 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘𝐽))
13515restcldi 21025 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ∈ (Clsd‘𝐽) ∧ 𝑋𝑌) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
136133, 134, 92, 135mp3an2i 1469 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
137 cmpcld 21253 . . 3 (((𝐽t 𝑌) ∈ Comp ∧ 𝑋 ∈ (Clsd‘(𝐽t 𝑌))) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
138127, 136, 137syl2anc 694 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
139102, 138eqeltrrd 2731 1 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231   ⊆ wss 3607  ⟨cop 4216   class class class wbr 4685   × cxp 5141  ◡ccnv 5142  ran crn 5144   “ cima 5146  Fun wfun 5920   Fn wfn 5921  ⟶wf 5922  –onto→wfo 5924  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  1st c1st 7208  2nd c2nd 7209  ℂcc 9972  ℝcr 9973  ici 9976   + caddc 9977   · cmul 9979   ≤ cle 10113  -cneg 10305  (,)cioo 12213  [,]cicc 12216  ℜcre 13881  ℑcim 13882  abscabs 14018   ↾t crest 16128  TopOpenctopn 16129  topGenctg 16145  ℂfldccnfld 19794  Topctop 20746  Clsdccld 20868   Cn ccn 21076  Compccmp 21237   ×t ctx 21411  Homeochmeo 21604 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-cn 21079  df-cnp 21080  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728 This theorem is referenced by:  cnheibor  22801
 Copyright terms: Public domain W3C validator