Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfsmf Structured version   Visualization version   GIF version

Theorem cnfsmf 41473
Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cnfsmf.1 (𝜑𝐽 ∈ Top)
cnfsmf.k 𝐾 = (topGen‘ran (,))
cnfsmf.f (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
cnfsmf.s 𝑆 = (SalGen‘𝐽)
Assertion
Ref Expression
cnfsmf (𝜑𝐹 ∈ (SMblFn‘𝑆))

Proof of Theorem cnfsmf
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1992 . 2 𝑎𝜑
2 cnfsmf.1 . . 3 (𝜑𝐽 ∈ Top)
3 cnfsmf.s . . 3 𝑆 = (SalGen‘𝐽)
42, 3salgencld 41088 . 2 (𝜑𝑆 ∈ SAlg)
5 cnfsmf.f . . . . 5 (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
6 eqid 2760 . . . . . 6 (𝐽t dom 𝐹) = (𝐽t dom 𝐹)
7 eqid 2760 . . . . . 6 𝐾 = 𝐾
86, 7cnf 21272 . . . . 5 (𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾) → 𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
95, 8syl 17 . . . 4 (𝜑𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
109fdmd 39937 . . 3 (𝜑 → dom 𝐹 = (𝐽t dom 𝐹))
11 ovex 6842 . . . . . . . 8 (𝐽t dom 𝐹) ∈ V
1211uniex 7119 . . . . . . 7 (𝐽t dom 𝐹) ∈ V
1312a1i 11 . . . . . 6 (𝜑 (𝐽t dom 𝐹) ∈ V)
1410, 13eqeltrd 2839 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
152, 14unirestss 39824 . . . 4 (𝜑 (𝐽t dom 𝐹) ⊆ 𝐽)
163sssalgen 41074 . . . . . 6 (𝐽 ∈ Top → 𝐽𝑆)
172, 16syl 17 . . . . 5 (𝜑𝐽𝑆)
1817unissd 4614 . . . 4 (𝜑 𝐽 𝑆)
1915, 18sstrd 3754 . . 3 (𝜑 (𝐽t dom 𝐹) ⊆ 𝑆)
2010, 19eqsstrd 3780 . 2 (𝜑 → dom 𝐹 𝑆)
21 uniretop 22787 . . . . . . 7 ℝ = (topGen‘ran (,))
22 cnfsmf.k . . . . . . . 8 𝐾 = (topGen‘ran (,))
2322unieqi 4597 . . . . . . 7 𝐾 = (topGen‘ran (,))
2421, 23eqtr4i 2785 . . . . . 6 ℝ = 𝐾
2524a1i 11 . . . . 5 (𝜑 → ℝ = 𝐾)
2625feq3d 6193 . . . 4 (𝜑 → (𝐹: (𝐽t dom 𝐹)⟶ℝ ↔ 𝐹: (𝐽t dom 𝐹)⟶ 𝐾))
279, 26mpbird 247 . . 3 (𝜑𝐹: (𝐽t dom 𝐹)⟶ℝ)
2827ffdmd 6224 . 2 (𝜑𝐹:dom 𝐹⟶ℝ)
29 ssrest 21202 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐽𝑆) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
304, 17, 29syl2anc 696 . . . 4 (𝜑 → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3130adantr 472 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3210rabeqd 39793 . . . . 5 (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
3332adantr 472 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
34 nfcv 2902 . . . . 5 𝑥𝑎
35 nfcv 2902 . . . . 5 𝑥𝐹
36 nfv 1992 . . . . 5 𝑥(𝜑𝑎 ∈ ℝ)
37 eqid 2760 . . . . 5 {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
38 rexr 10297 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3938adantl 473 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
405adantr 472 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
4134, 35, 36, 22, 6, 37, 39, 40rfcnpre2 39707 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4233, 41eqeltrd 2839 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4331, 42sseldd 3745 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
441, 4, 20, 28, 43issmfd 41468 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  wss 3715   cuni 4588   class class class wbr 4804  dom cdm 5266  ran crn 5267  wf 6045  cfv 6049  (class class class)co 6814  cr 10147  *cxr 10285   < clt 10286  (,)cioo 12388  t crest 16303  topGenctg 16320  Topctop 20920   Cn ccn 21250  SAlgcsalg 41049  SalGencsalgen 41053  SMblFncsmblfn 41433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-ioo 12392  df-ico 12394  df-rest 16305  df-topgen 16326  df-top 20921  df-topon 20938  df-bases 20972  df-cn 21253  df-salg 41050  df-salgen 41054  df-smblfn 41434
This theorem is referenced by:  cnfrrnsmf  41484
  Copyright terms: Public domain W3C validator