![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldunif | Structured version Visualization version GIF version |
Description: The uniform structure component of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldunif | ⊢ (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6342 | . 2 ⊢ (metUnif‘(abs ∘ − )) ∈ V | |
2 | cnfldstr 19962 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
3 | unifid 16272 | . . 3 ⊢ UnifSet = Slot (UnifSet‘ndx) | |
4 | ssun2 3926 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} ⊆ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) | |
5 | ssun2 3926 | . . . . 5 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
6 | df-cnfld 19961 | . . . . 5 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
7 | 5, 6 | sseqtr4i 3785 | . . . 4 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ ℂfld |
8 | 4, 7 | sstri 3759 | . . 3 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} ⊆ ℂfld |
9 | 2, 3, 8 | strfv 16113 | . 2 ⊢ ((metUnif‘(abs ∘ − )) ∈ V → (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld)) |
10 | 1, 9 | ax-mp 5 | 1 ⊢ (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∪ cun 3719 {csn 4314 {ctp 4318 〈cop 4320 ∘ ccom 5253 ‘cfv 6031 ℂcc 10135 1c1 10138 + caddc 10140 · cmul 10142 ≤ cle 10276 − cmin 10467 3c3 11272 ;cdc 11694 ∗ccj 14043 abscabs 14181 ndxcnx 16060 Basecbs 16063 +gcplusg 16148 .rcmulr 16149 *𝑟cstv 16150 TopSetcts 16154 lecple 16155 distcds 16157 UnifSetcunif 16158 MetOpencmopn 19950 metUnifcmetu 19951 ℂfldccnfld 19960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-plusg 16161 df-mulr 16162 df-starv 16163 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-cnfld 19961 |
This theorem is referenced by: cnflduss 23370 |
Copyright terms: Public domain | W3C validator |