![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldtopon | Structured version Visualization version GIF version |
Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnfldtopon | ⊢ 𝐽 ∈ (TopOn‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldtps 22703 | . 2 ⊢ ℂfld ∈ TopSp | |
2 | cnfldbas 19873 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
3 | cnfldtopn.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
4 | 2, 3 | istps 20861 | . 2 ⊢ (ℂfld ∈ TopSp ↔ 𝐽 ∈ (TopOn‘ℂ)) |
5 | 1, 4 | mpbi 220 | 1 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ∈ wcel 2103 ‘cfv 6001 ℂcc 10047 TopOpenctopn 16205 ℂfldccnfld 19869 TopOnctopon 20838 TopSpctps 20859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-sup 8464 df-inf 8465 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-q 11903 df-rp 11947 df-xneg 12060 df-xadd 12061 df-xmul 12062 df-fz 12441 df-seq 12917 df-exp 12976 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-plusg 16077 df-mulr 16078 df-starv 16079 df-tset 16083 df-ple 16084 df-ds 16087 df-unif 16088 df-rest 16206 df-topn 16207 df-topgen 16227 df-psmet 19861 df-xmet 19862 df-met 19863 df-bl 19864 df-mopn 19865 df-cnfld 19870 df-top 20822 df-topon 20839 df-topsp 20860 df-bases 20873 df-xms 22247 df-ms 22248 |
This theorem is referenced by: cnfldtop 22709 unicntop 22711 sszcld 22742 reperflem 22743 cnperf 22745 divcn 22793 fsumcn 22795 expcn 22797 divccn 22798 cncfcn1 22835 cncfmptc 22836 cncfmptid 22837 cncfmpt2f 22839 cdivcncf 22842 abscncfALT 22845 cncfcnvcn 22846 cnmptre 22848 iirevcn 22851 iihalf1cn 22853 iihalf2cn 22855 iimulcn 22859 icchmeo 22862 cnrehmeo 22874 cnheiborlem 22875 cnheibor 22876 cnllycmp 22877 evth 22880 evth2 22881 lebnumlem2 22883 reparphti 22918 pcoass 22945 csscld 23169 clsocv 23170 cncmet 23240 resscdrg 23275 mbfimaopnlem 23542 limcvallem 23755 ellimc2 23761 limcnlp 23762 limcflflem 23764 limcflf 23765 limcmo 23766 limcres 23770 cnplimc 23771 cnlimc 23772 limccnp 23775 limccnp2 23776 limciun 23778 dvbss 23785 perfdvf 23787 recnperf 23789 dvreslem 23793 dvres2lem 23794 dvres3a 23798 dvidlem 23799 dvcnp2 23803 dvcn 23804 dvnres 23814 dvaddbr 23821 dvmulbr 23822 dvcmulf 23828 dvcobr 23829 dvcjbr 23832 dvrec 23838 dvmptid 23840 dvmptc 23841 dvmptres2 23845 dvmptcmul 23847 dvmptntr 23854 dvmptfsum 23858 dvcnvlem 23859 dvcnv 23860 dvexp3 23861 dveflem 23862 dvlipcn 23877 lhop1lem 23896 lhop2 23898 lhop 23899 dvcnvrelem2 23901 dvcnvre 23902 ftc1lem3 23921 ftc1cn 23926 plycn 24137 dvply1 24159 dvtaylp 24244 taylthlem1 24247 taylthlem2 24248 ulmdvlem3 24276 psercn2 24297 psercn 24300 pserdvlem2 24302 pserdv 24303 abelth 24315 pige3 24389 logcn 24513 dvloglem 24514 logdmopn 24515 dvlog 24517 dvlog2 24519 efopnlem2 24523 efopn 24524 logtayl 24526 dvcxp1 24601 cxpcn 24606 cxpcn2 24607 cxpcn3 24609 resqrtcn 24610 sqrtcn 24611 loglesqrt 24619 atansopn 24779 dvatan 24782 xrlimcnp 24815 efrlim 24816 lgamucov 24884 lgamucov2 24885 ftalem3 24921 vmcn 27784 dipcn 27805 ipasslem7 27921 ipasslem8 27922 occllem 28392 nlelchi 29150 tpr2rico 30188 rmulccn 30204 raddcn 30205 cxpcncf1 30903 cvxpconn 31452 cvxsconn 31453 cnllysconn 31455 sinccvglem 31794 ivthALT 32557 knoppcnlem10 32719 knoppcnlem11 32720 broucube 33675 dvtanlem 33691 dvtan 33692 ftc1cnnc 33716 dvasin 33728 dvacos 33729 dvreasin 33730 dvreacos 33731 areacirclem1 33732 areacirclem2 33733 areacirclem4 33735 refsumcn 39605 fprodcnlem 40251 fprodcn 40252 fsumcncf 40511 ioccncflimc 40518 cncfuni 40519 icocncflimc 40522 cncfdmsn 40523 cncfiooicclem1 40526 cxpcncf2 40533 fprodsub2cncf 40539 fprodadd2cncf 40540 dvmptconst 40549 dvmptidg 40551 dvresntr 40552 itgsubsticclem 40611 dirkercncflem2 40741 dirkercncflem4 40743 dirkercncf 40744 fourierdlem32 40776 fourierdlem33 40777 fourierdlem62 40805 fourierdlem93 40836 fourierdlem101 40844 |
Copyright terms: Public domain | W3C validator |