MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldtopn Structured version   Visualization version   GIF version

Theorem cnfldtopn 22778
Description: The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypothesis
Ref Expression
cnfldtopn.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
cnfldtopn 𝐽 = (MetOpen‘(abs ∘ − ))

Proof of Theorem cnfldtopn
StepHypRef Expression
1 cnfldtopn.1 . 2 𝐽 = (TopOpen‘ℂfld)
2 cnxmet 22769 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
3 eqid 2752 . . . 4 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
43mopntopon 22437 . . 3 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ))
5 cnfldbas 19944 . . . 4 ℂ = (Base‘ℂfld)
6 cnfldtset 19948 . . . 4 (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld)
75, 6topontopn 20938 . . 3 ((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) → (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld))
82, 4, 7mp2b 10 . 2 (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld)
91, 8eqtr4i 2777 1 𝐽 = (MetOpen‘(abs ∘ − ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1624  wcel 2131  ccom 5262  cfv 6041  cc 10118  cmin 10450  abscabs 14165  TopOpenctopn 16276  ∞Metcxmt 19925  MetOpencmopn 19930  fldccnfld 19940  TopOnctopon 20909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-fz 12512  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-plusg 16148  df-mulr 16149  df-starv 16150  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-rest 16277  df-topn 16278  df-topgen 16298  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-cnfld 19941  df-top 20893  df-topon 20910  df-bases 20944
This theorem is referenced by:  cnfldhaus  22781  tgioo2  22799  recld2  22810  zdis  22812  reperflem  22814  addcnlem  22860  divcn  22864  dfii3  22879  cncfcn  22905  cnheibor  22947  cnllycmp  22948  ipcn  23237  lmclim  23293  cncmet  23311  recmet  23312  ellimc3  23834  dvlipcn  23948  lhop1lem  23967  ftc1lem6  23995  ulmdvlem3  24347  psercn  24371  pserdvlem2  24373  abelth  24386  dvlog2  24590  efopnlem2  24594  efopn  24595  logtayl  24597  cxpcn3  24680  rlimcnp  24883  xrlimcnp  24886  efrlim  24887  lgamucov  24955  ftalem3  24992  smcnlem  27853  hhcnf  29065  tpr2rico  30259  cnllysconn  31526  ftc1cnnc  33789  binomcxplemdvbinom  39046  binomcxplemnotnn0  39049  limcrecl  40356  islpcn  40366
  Copyright terms: Public domain W3C validator