![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldtopn | Structured version Visualization version GIF version |
Description: The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnfldtopn | ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldtopn.1 | . 2 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
2 | cnxmet 22769 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
3 | eqid 2752 | . . . 4 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
4 | 3 | mopntopon 22437 | . . 3 ⊢ ((abs ∘ − ) ∈ (∞Met‘ℂ) → (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)) |
5 | cnfldbas 19944 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
6 | cnfldtset 19948 | . . . 4 ⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | |
7 | 5, 6 | topontopn 20938 | . . 3 ⊢ ((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) → (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld)) |
8 | 2, 4, 7 | mp2b 10 | . 2 ⊢ (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld) |
9 | 1, 8 | eqtr4i 2777 | 1 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 ∈ wcel 2131 ∘ ccom 5262 ‘cfv 6041 ℂcc 10118 − cmin 10450 abscabs 14165 TopOpenctopn 16276 ∞Metcxmt 19925 MetOpencmopn 19930 ℂfldccnfld 19940 TopOnctopon 20909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-uz 11872 df-q 11974 df-rp 12018 df-xneg 12131 df-xadd 12132 df-xmul 12133 df-fz 12512 df-seq 12988 df-exp 13047 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-plusg 16148 df-mulr 16149 df-starv 16150 df-tset 16154 df-ple 16155 df-ds 16158 df-unif 16159 df-rest 16277 df-topn 16278 df-topgen 16298 df-psmet 19932 df-xmet 19933 df-met 19934 df-bl 19935 df-mopn 19936 df-cnfld 19941 df-top 20893 df-topon 20910 df-bases 20944 |
This theorem is referenced by: cnfldhaus 22781 tgioo2 22799 recld2 22810 zdis 22812 reperflem 22814 addcnlem 22860 divcn 22864 dfii3 22879 cncfcn 22905 cnheibor 22947 cnllycmp 22948 ipcn 23237 lmclim 23293 cncmet 23311 recmet 23312 ellimc3 23834 dvlipcn 23948 lhop1lem 23967 ftc1lem6 23995 ulmdvlem3 24347 psercn 24371 pserdvlem2 24373 abelth 24386 dvlog2 24590 efopnlem2 24594 efopn 24595 logtayl 24597 cxpcn3 24680 rlimcnp 24883 xrlimcnp 24886 efrlim 24887 lgamucov 24955 ftalem3 24992 smcnlem 27853 hhcnf 29065 tpr2rico 30259 cnllysconn 31526 ftc1cnnc 33789 binomcxplemdvbinom 39046 binomcxplemnotnn0 39049 limcrecl 40356 islpcn 40366 |
Copyright terms: Public domain | W3C validator |