![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldmul | Structured version Visualization version GIF version |
Description: The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldmul | ⊢ · = (.r‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulex 12016 | . 2 ⊢ · ∈ V | |
2 | cnfldstr 19942 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
3 | mulrid 16191 | . . 3 ⊢ .r = Slot (.r‘ndx) | |
4 | snsstp3 4486 | . . . 4 ⊢ {〈(.r‘ndx), · 〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} | |
5 | ssun1 3911 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
6 | ssun1 3911 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
7 | df-cnfld 19941 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
8 | 6, 7 | sseqtr4i 3771 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
9 | 5, 8 | sstri 3745 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ℂfld |
10 | 4, 9 | sstri 3745 | . . 3 ⊢ {〈(.r‘ndx), · 〉} ⊆ ℂfld |
11 | 2, 3, 10 | strfv 16101 | . 2 ⊢ ( · ∈ V → · = (.r‘ℂfld)) |
12 | 1, 11 | ax-mp 5 | 1 ⊢ · = (.r‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 ∈ wcel 2131 Vcvv 3332 ∪ cun 3705 {csn 4313 {ctp 4317 〈cop 4319 ∘ ccom 5262 ‘cfv 6041 ℂcc 10118 1c1 10121 + caddc 10123 · cmul 10125 ≤ cle 10259 − cmin 10450 3c3 11255 ;cdc 11677 ∗ccj 14027 abscabs 14165 ndxcnx 16048 Basecbs 16051 +gcplusg 16135 .rcmulr 16136 *𝑟cstv 16137 TopSetcts 16141 lecple 16142 distcds 16144 UnifSetcunif 16145 MetOpencmopn 19930 metUnifcmetu 19931 ℂfldccnfld 19940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-mulf 10200 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-uz 11872 df-fz 12512 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-plusg 16148 df-mulr 16149 df-starv 16150 df-tset 16154 df-ple 16155 df-ds 16158 df-unif 16159 df-cnfld 19941 |
This theorem is referenced by: cncrng 19961 cnfld1 19965 cndrng 19969 cnflddiv 19970 cnfldexp 19973 cnsrng 19974 cnsubrglem 19990 absabv 19997 cnsubrg 20000 cnmsubglem 20003 expmhm 20009 nn0srg 20010 rge0srg 20011 zringmulr 20021 expghm 20038 psgnghm 20120 psgnco 20123 evpmodpmf1o 20136 remulr 20151 mdetralt 20608 clmmul 23067 clmmcl 23077 isclmp 23089 cnlmod 23132 cnncvsmulassdemo 23156 cphsubrglem 23169 cphdivcl 23174 cphabscl 23177 cphsqrtcl2 23178 cphsqrtcl3 23179 ipcau2 23225 plypf1 24159 dvply2g 24231 taylply2 24313 reefgim 24395 efabl 24487 efsubm 24488 amgmlem 24907 amgm 24908 wilthlem2 24986 wilthlem3 24987 dchrelbas3 25154 dchrzrhmul 25162 dchrmulcl 25165 dchrn0 25166 dchrinvcl 25169 dchrsum2 25184 sum2dchr 25190 qabvexp 25506 ostthlem2 25508 padicabv 25510 ostth2lem2 25514 ostth3 25518 xrge0slmod 30145 iistmd 30249 xrge0iifmhm 30286 xrge0pluscn 30287 qqhrhm 30334 cnsrexpcl 38229 cnsrplycl 38231 rngunsnply 38237 amgm2d 38995 amgm3d 38996 amgm4d 38997 cnfldsrngmul 42273 aacllem 43052 amgmlemALT 43054 amgmw2d 43055 |
Copyright terms: Public domain | W3C validator |