MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldmul Structured version   Visualization version   GIF version

Theorem cnfldmul 19946
Description: The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldmul · = (.r‘ℂfld)

Proof of Theorem cnfldmul
StepHypRef Expression
1 mulex 12016 . 2 · ∈ V
2 cnfldstr 19942 . . 3 fld Struct ⟨1, 13⟩
3 mulrid 16191 . . 3 .r = Slot (.r‘ndx)
4 snsstp3 4486 . . . 4 {⟨(.r‘ndx), · ⟩} ⊆ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
5 ssun1 3911 . . . . 5 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
6 ssun1 3911 . . . . . 6 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7 df-cnfld 19941 . . . . . 6 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
86, 7sseqtr4i 3771 . . . . 5 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ ℂfld
95, 8sstri 3745 . . . 4 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ℂfld
104, 9sstri 3745 . . 3 {⟨(.r‘ndx), · ⟩} ⊆ ℂfld
112, 3, 10strfv 16101 . 2 ( · ∈ V → · = (.r‘ℂfld))
121, 11ax-mp 5 1 · = (.r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1624  wcel 2131  Vcvv 3332  cun 3705  {csn 4313  {ctp 4317  cop 4319  ccom 5262  cfv 6041  cc 10118  1c1 10121   + caddc 10123   · cmul 10125  cle 10259  cmin 10450  3c3 11255  cdc 11677  ccj 14027  abscabs 14165  ndxcnx 16048  Basecbs 16051  +gcplusg 16135  .rcmulr 16136  *𝑟cstv 16137  TopSetcts 16141  lecple 16142  distcds 16144  UnifSetcunif 16145  MetOpencmopn 19930  metUnifcmetu 19931  fldccnfld 19940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-plusg 16148  df-mulr 16149  df-starv 16150  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-cnfld 19941
This theorem is referenced by:  cncrng  19961  cnfld1  19965  cndrng  19969  cnflddiv  19970  cnfldexp  19973  cnsrng  19974  cnsubrglem  19990  absabv  19997  cnsubrg  20000  cnmsubglem  20003  expmhm  20009  nn0srg  20010  rge0srg  20011  zringmulr  20021  expghm  20038  psgnghm  20120  psgnco  20123  evpmodpmf1o  20136  remulr  20151  mdetralt  20608  clmmul  23067  clmmcl  23077  isclmp  23089  cnlmod  23132  cnncvsmulassdemo  23156  cphsubrglem  23169  cphdivcl  23174  cphabscl  23177  cphsqrtcl2  23178  cphsqrtcl3  23179  ipcau2  23225  plypf1  24159  dvply2g  24231  taylply2  24313  reefgim  24395  efabl  24487  efsubm  24488  amgmlem  24907  amgm  24908  wilthlem2  24986  wilthlem3  24987  dchrelbas3  25154  dchrzrhmul  25162  dchrmulcl  25165  dchrn0  25166  dchrinvcl  25169  dchrsum2  25184  sum2dchr  25190  qabvexp  25506  ostthlem2  25508  padicabv  25510  ostth2lem2  25514  ostth3  25518  xrge0slmod  30145  iistmd  30249  xrge0iifmhm  30286  xrge0pluscn  30287  qqhrhm  30334  cnsrexpcl  38229  cnsrplycl  38231  rngunsnply  38237  amgm2d  38995  amgm3d  38996  amgm4d  38997  cnfldsrngmul  42273  aacllem  43052  amgmlemALT  43054  amgmw2d  43055
  Copyright terms: Public domain W3C validator