![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldds | Structured version Visualization version GIF version |
Description: The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldds | ⊢ (abs ∘ − ) = (dist‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absf 14296 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
2 | subf 10495 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
3 | fco 6219 | . . . 4 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
4 | 1, 2, 3 | mp2an 710 | . . 3 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
5 | cnex 10229 | . . . 4 ⊢ ℂ ∈ V | |
6 | 5, 5 | xpex 7128 | . . 3 ⊢ (ℂ × ℂ) ∈ V |
7 | reex 10239 | . . 3 ⊢ ℝ ∈ V | |
8 | fex2 7287 | . . 3 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (ℂ × ℂ) ∈ V ∧ ℝ ∈ V) → (abs ∘ − ) ∈ V) | |
9 | 4, 6, 7, 8 | mp3an 1573 | . 2 ⊢ (abs ∘ − ) ∈ V |
10 | cnfldstr 19970 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
11 | dsid 16285 | . . 3 ⊢ dist = Slot (dist‘ndx) | |
12 | snsstp3 4494 | . . . 4 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} | |
13 | ssun1 3919 | . . . . 5 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) | |
14 | ssun2 3920 | . . . . . 6 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
15 | df-cnfld 19969 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
16 | 14, 15 | sseqtr4i 3779 | . . . . 5 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ ℂfld |
17 | 13, 16 | sstri 3753 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
18 | 12, 17 | sstri 3753 | . . 3 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
19 | 10, 11, 18 | strfv 16129 | . 2 ⊢ ((abs ∘ − ) ∈ V → (abs ∘ − ) = (dist‘ℂfld)) |
20 | 9, 19 | ax-mp 5 | 1 ⊢ (abs ∘ − ) = (dist‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∪ cun 3713 {csn 4321 {ctp 4325 〈cop 4327 × cxp 5264 ∘ ccom 5270 ⟶wf 6045 ‘cfv 6049 ℂcc 10146 ℝcr 10147 1c1 10149 + caddc 10151 · cmul 10153 ≤ cle 10287 − cmin 10478 3c3 11283 ;cdc 11705 ∗ccj 14055 abscabs 14193 ndxcnx 16076 Basecbs 16079 +gcplusg 16163 .rcmulr 16164 *𝑟cstv 16165 TopSetcts 16169 lecple 16170 distcds 16172 UnifSetcunif 16173 MetOpencmopn 19958 metUnifcmetu 19959 ℂfldccnfld 19968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-rp 12046 df-fz 12540 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-plusg 16176 df-mulr 16177 df-starv 16178 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-cnfld 19969 |
This theorem is referenced by: reds 20184 cnfldms 22800 cnfldnm 22803 cnngp 22804 cncms 23371 cnfldcusp 23373 qqhcn 30365 qqhucn 30366 cnrrext 30384 cnpwstotbnd 33927 repwsmet 33964 rrnequiv 33965 |
Copyright terms: Public domain | W3C validator |