![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnflddiv | Structured version Visualization version GIF version |
Description: The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
cnflddiv | ⊢ / = (/r‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring 19983 | . . . . . . . 8 ⊢ ℂfld ∈ Ring | |
2 | cnfldbas 19965 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
3 | cnfld0 19985 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
4 | cndrng 19990 | . . . . . . . . . 10 ⊢ ℂfld ∈ DivRing | |
5 | 2, 3, 4 | drngui 18963 | . . . . . . . . 9 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
6 | eqid 2771 | . . . . . . . . 9 ⊢ (/r‘ℂfld) = (/r‘ℂfld) | |
7 | cnfldmul 19967 | . . . . . . . . 9 ⊢ · = (.r‘ℂfld) | |
8 | 2, 5, 6, 7 | dvrcan1 18899 | . . . . . . . 8 ⊢ ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦) · 𝑦) = 𝑥) |
9 | 1, 8 | mp3an1 1559 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦) · 𝑦) = 𝑥) |
10 | 9 | oveq1d 6811 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥 / 𝑦)) |
11 | 2, 5, 6 | dvrcl 18894 | . . . . . . . 8 ⊢ ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ) |
12 | 1, 11 | mp3an1 1559 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ) |
13 | simpr 471 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0})) | |
14 | eldifsn 4454 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) | |
15 | 13, 14 | sylib 208 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) |
16 | 15 | simpld 482 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
17 | 15 | simprd 483 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
18 | 12, 16, 17 | divcan4d 11013 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥(/r‘ℂfld)𝑦)) |
19 | 10, 18 | eqtr3d 2807 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (𝑥(/r‘ℂfld)𝑦)) |
20 | simpl 468 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) | |
21 | divval 10893 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
22 | 20, 16, 17, 21 | syl3anc 1476 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
23 | 19, 22 | eqtr3d 2807 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
24 | eqid 2771 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
25 | 2, 7, 5, 24, 6 | dvrval 18893 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (𝑥 · ((invr‘ℂfld)‘𝑦))) |
26 | 23, 25 | eqtr3d 2807 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · ((invr‘ℂfld)‘𝑦))) |
27 | 26 | mpt2eq3ia 6871 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · ((invr‘ℂfld)‘𝑦))) |
28 | df-div 10891 | . 2 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
29 | 2, 7, 5, 24, 6 | dvrfval 18892 | . 2 ⊢ (/r‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · ((invr‘ℂfld)‘𝑦))) |
30 | 27, 28, 29 | 3eqtr4i 2803 | 1 ⊢ / = (/r‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∖ cdif 3720 {csn 4317 ‘cfv 6030 ℩crio 6756 (class class class)co 6796 ↦ cmpt2 6798 ℂcc 10140 0cc0 10142 · cmul 10147 / cdiv 10890 Ringcrg 18755 invrcinvr 18879 /rcdvr 18890 ℂfldccnfld 19961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-tpos 7508 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-cmn 18402 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-cnfld 19962 |
This theorem is referenced by: cnfldinv 19992 cnsubdrglem 20012 qsssubdrg 20020 redvr 20180 cvsdiv 23151 qrngdiv 25534 |
Copyright terms: Public domain | W3C validator |