![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfld0 | Structured version Visualization version GIF version |
Description: The zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cnfld0 | ⊢ 0 = (0g‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 00id 10403 | . . 3 ⊢ (0 + 0) = 0 | |
2 | cnring 19970 | . . . . 5 ⊢ ℂfld ∈ Ring | |
3 | ringgrp 18752 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
5 | 0cn 10224 | . . . 4 ⊢ 0 ∈ ℂ | |
6 | cnfldbas 19952 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
7 | cnfldadd 19953 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
8 | eqid 2760 | . . . . 5 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
9 | 6, 7, 8 | grpid 17658 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 0 ∈ ℂ) → ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0)) |
10 | 4, 5, 9 | mp2an 710 | . . 3 ⊢ ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0) |
11 | 1, 10 | mpbi 220 | . 2 ⊢ (0g‘ℂfld) = 0 |
12 | 11 | eqcomi 2769 | 1 ⊢ 0 = (0g‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 0cc0 10128 + caddc 10131 0gc0g 16302 Grpcgrp 17623 Ringcrg 18747 ℂfldccnfld 19948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-mulr 16157 df-starv 16158 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-cmn 18395 df-mgp 18690 df-ring 18749 df-cring 18750 df-cnfld 19949 |
This theorem is referenced by: cnfldneg 19974 cndrng 19977 cnflddiv 19978 cnfldinv 19979 cnfldmulg 19980 cnsubmlem 19996 cnsubdrglem 19999 absabv 20005 qsssubdrg 20007 cnmgpabl 20009 cnmsubglem 20011 gzrngunitlem 20013 gzrngunit 20014 gsumfsum 20015 expmhm 20017 nn0srg 20018 rge0srg 20019 zring0 20030 zringunit 20038 expghm 20046 psgninv 20130 zrhpsgnmhm 20132 re0g 20160 regsumsupp 20170 cnfldnm 22783 clm0 23072 cphsubrglem 23177 cphreccllem 23178 tdeglem1 24017 tdeglem3 24018 tdeglem4 24019 plypf1 24167 dvply2g 24239 tayl0 24315 taylpfval 24318 efsubm 24496 jensenlem2 24913 jensen 24914 amgmlem 24915 amgm 24916 dchrghm 25180 dchrabs 25184 sum2dchr 25198 lgseisenlem4 25302 qrng0 25509 xrge0slmod 30153 zringnm 30313 rezh 30324 fsumcnsrcl 38238 cnsrplycl 38239 rngunsnply 38245 proot1ex 38281 deg1mhm 38287 2zrng0 42448 amgmwlem 43061 amgmlemALT 43062 |
Copyright terms: Public domain | W3C validator |