![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfin0 | Structured version Visualization version GIF version |
Description: The empty set is an ordinal in Cantor normal form. (Contributed by ML, 24-Jun-2022.) |
Ref | Expression |
---|---|
cnfin.1 | ⊢ 𝐼 = {〈∅, 1𝑜〉} |
cnfin.add | ⊢ + = (𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑛 ∈ (dom 𝑦 ∪ dom 𝑧) ↦ ((𝑦‘𝑛) +𝑜 (𝑧‘𝑛)))) |
cnfin.tr | ⊢ (𝜑 ↔ ∃𝑧(〈𝑥, 𝑧〉 ∈ 𝑐 ∧ 〈𝑧, 𝑦〉 ∈ 𝑐)) |
cnfin.ltadd | ⊢ (𝜓 ↔ (𝑥 ∈ (dom 𝑐 ∪ ran 𝑐) ∧ ∃𝑏 ∈ ran 𝑐 𝑦 = (𝑥 + 𝑏))) |
cnfin.ltexp | ⊢ (𝜒 ↔ ∃𝑎∃𝑏(〈𝑎, 𝑏〉 ∈ 𝑐 ∧ (𝑥 = {〈𝑎, 1𝑜〉} ∧ 𝑦 = {〈𝑏, 1𝑜〉}))) |
cnfin.yrule | ⊢ 𝑌 = {〈𝑥, 𝑦〉 ∣ (〈𝑥, 𝑦〉 ∈ 𝑐 ∨ (𝜑 ∨ (𝜓 ∨ 𝜒)))} |
cnfin.lt | ⊢ < = ∪ ran (rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω) |
cnfin.def | ⊢ 𝐶 = dom < |
Ref | Expression |
---|---|
cnfin0 | ⊢ ∅ ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5060 | . . . . . 6 ⊢ 〈∅, 𝐼〉 ∈ V | |
2 | 1 | snid 4347 | . . . . 5 ⊢ 〈∅, 𝐼〉 ∈ {〈∅, 𝐼〉} |
3 | snex 5036 | . . . . . . 7 ⊢ {〈∅, 𝐼〉} ∈ V | |
4 | fr0g 7684 | . . . . . . 7 ⊢ ({〈∅, 𝐼〉} ∈ V → ((rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω)‘∅) = {〈∅, 𝐼〉}) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ((rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω)‘∅) = {〈∅, 𝐼〉} |
6 | frfnom 7683 | . . . . . . 7 ⊢ (rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω) Fn ω | |
7 | peano1 7232 | . . . . . . 7 ⊢ ∅ ∈ ω | |
8 | fnfvelrn 6499 | . . . . . . 7 ⊢ (((rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω)‘∅) ∈ ran (rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω)) | |
9 | 6, 7, 8 | mp2an 672 | . . . . . 6 ⊢ ((rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω)‘∅) ∈ ran (rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω) |
10 | 5, 9 | eqeltrri 2847 | . . . . 5 ⊢ {〈∅, 𝐼〉} ∈ ran (rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω) |
11 | elunii 4579 | . . . . 5 ⊢ ((〈∅, 𝐼〉 ∈ {〈∅, 𝐼〉} ∧ {〈∅, 𝐼〉} ∈ ran (rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω)) → 〈∅, 𝐼〉 ∈ ∪ ran (rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω)) | |
12 | 2, 10, 11 | mp2an 672 | . . . 4 ⊢ 〈∅, 𝐼〉 ∈ ∪ ran (rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω) |
13 | cnfin.lt | . . . 4 ⊢ < = ∪ ran (rec((𝑐 ∈ V ↦ 𝑌), {〈∅, 𝐼〉}) ↾ ω) | |
14 | 12, 13 | eleqtrri 2849 | . . 3 ⊢ 〈∅, 𝐼〉 ∈ < |
15 | 0ex 4924 | . . . 4 ⊢ ∅ ∈ V | |
16 | cnfin.1 | . . . . 5 ⊢ 𝐼 = {〈∅, 1𝑜〉} | |
17 | snex 5036 | . . . . 5 ⊢ {〈∅, 1𝑜〉} ∈ V | |
18 | 16, 17 | eqeltri 2846 | . . . 4 ⊢ 𝐼 ∈ V |
19 | 15, 18 | opeldm 5466 | . . 3 ⊢ (〈∅, 𝐼〉 ∈ < → ∅ ∈ dom < ) |
20 | 14, 19 | ax-mp 5 | . 2 ⊢ ∅ ∈ dom < |
21 | cnfin.def | . 2 ⊢ 𝐶 = dom < | |
22 | 20, 21 | eleqtrri 2849 | 1 ⊢ ∅ ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∨ wo 836 = wceq 1631 ∃wex 1852 ∈ wcel 2145 ∃wrex 3062 Vcvv 3351 ∪ cun 3721 ∅c0 4063 {csn 4316 〈cop 4322 ∪ cuni 4574 {copab 4846 ↦ cmpt 4863 dom cdm 5249 ran crn 5250 ↾ cres 5251 Fn wfn 6026 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 ωcom 7212 reccrdg 7658 1𝑜c1o 7706 +𝑜 coa 7710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |