![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfex | Structured version Visualization version GIF version |
Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
cnfex | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | jctr 564 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) |
3 | istopon 20765 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) | |
4 | 2, 3 | sylibr 224 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
5 | eqid 2651 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
6 | 5 | jctr 564 | . . . 4 ⊢ (𝐾 ∈ Top → (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) |
7 | istopon 20765 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘∪ 𝐾) ↔ (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) | |
8 | 6, 7 | sylibr 224 | . . 3 ⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
9 | cnfval 21085 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
10 | 4, 8, 9 | syl2an 493 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
11 | uniexg 6997 | . . . . 5 ⊢ (𝐾 ∈ Top → ∪ 𝐾 ∈ V) | |
12 | uniexg 6997 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
13 | mapvalg 7909 | . . . . 5 ⊢ ((∪ 𝐾 ∈ V ∧ ∪ 𝐽 ∈ V) → (∪ 𝐾 ↑𝑚 ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) | |
14 | 11, 12, 13 | syl2anr 494 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑𝑚 ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) |
15 | mapex 7905 | . . . . 5 ⊢ ((∪ 𝐽 ∈ V ∧ ∪ 𝐾 ∈ V) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) | |
16 | 12, 11, 15 | syl2an 493 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) |
17 | 14, 16 | eqeltrd 2730 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∈ V) |
18 | rabexg 4844 | . . 3 ⊢ ((∪ 𝐾 ↑𝑚 ∪ 𝐽) ∈ V → {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) | |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) |
20 | 10, 19 | eqeltrd 2730 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 ∀wral 2941 {crab 2945 Vcvv 3231 ∪ cuni 4468 ◡ccnv 5142 “ cima 5146 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 Topctop 20746 TopOnctopon 20763 Cn ccn 21076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-topon 20764 df-cn 21079 |
This theorem is referenced by: stoweidlem53 40588 stoweidlem57 40592 |
Copyright terms: Public domain | W3C validator |