MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3lem Structured version   Visualization version   GIF version

Theorem cnfcom3lem 8761
Description: Lemma for cnfcom3 8762. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
cnfcom.t 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom3.1 (𝜑 → ω ⊆ 𝐵)
Assertion
Ref Expression
cnfcom3lem (𝜑𝑊 ∈ (On ∖ 1𝑜))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom3lem
StepHypRef Expression
1 cnfcom.w . . 3 𝑊 = (𝐺 dom 𝐺)
2 cnfcom.a . . . 4 (𝜑𝐴 ∈ On)
3 suppssdm 7464 . . . . . 6 (𝐹 supp ∅) ⊆ dom 𝐹
4 cnfcom.f . . . . . . . . . 10 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . . 13 𝑆 = dom (ω CNF 𝐴)
6 omelon 8704 . . . . . . . . . . . . . 14 ω ∈ On
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → ω ∈ On)
85, 7, 2cantnff1o 8754 . . . . . . . . . . . 12 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴))
9 f1ocnv 6298 . . . . . . . . . . . 12 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴) → (ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆)
10 f1of 6286 . . . . . . . . . . . 12 ((ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
118, 9, 103syl 18 . . . . . . . . . . 11 (𝜑(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
12 cnfcom.b . . . . . . . . . . 11 (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
1311, 12ffvelrnd 6511 . . . . . . . . . 10 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
144, 13syl5eqel 2831 . . . . . . . . 9 (𝜑𝐹𝑆)
155, 7, 2cantnfs 8724 . . . . . . . . 9 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1614, 15mpbid 222 . . . . . . . 8 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1716simpld 477 . . . . . . 7 (𝜑𝐹:𝐴⟶ω)
18 fdm 6200 . . . . . . 7 (𝐹:𝐴⟶ω → dom 𝐹 = 𝐴)
1917, 18syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
203, 19syl5sseq 3782 . . . . 5 (𝜑 → (𝐹 supp ∅) ⊆ 𝐴)
21 ovex 6829 . . . . . . . . . . 11 (𝐹 supp ∅) ∈ V
22 cnfcom.g . . . . . . . . . . . 12 𝐺 = OrdIso( E , (𝐹 supp ∅))
2322oion 8594 . . . . . . . . . . 11 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
2421, 23ax-mp 5 . . . . . . . . . 10 dom 𝐺 ∈ On
2524elexi 3341 . . . . . . . . 9 dom 𝐺 ∈ V
2625uniex 7106 . . . . . . . 8 dom 𝐺 ∈ V
2726sucid 5953 . . . . . . 7 dom 𝐺 ∈ suc dom 𝐺
28 cnfcom.h . . . . . . . 8 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
29 cnfcom.t . . . . . . . 8 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
30 cnfcom.m . . . . . . . 8 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
31 cnfcom.k . . . . . . . 8 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
32 cnfcom3.1 . . . . . . . . 9 (𝜑 → ω ⊆ 𝐵)
33 peano1 7238 . . . . . . . . . 10 ∅ ∈ ω
3433a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ ω)
3532, 34sseldd 3733 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐵)
365, 2, 12, 4, 22, 28, 29, 30, 31, 1, 35cnfcom2lem 8759 . . . . . . 7 (𝜑 → dom 𝐺 = suc dom 𝐺)
3727, 36syl5eleqr 2834 . . . . . 6 (𝜑 dom 𝐺 ∈ dom 𝐺)
3822oif 8588 . . . . . . 7 𝐺:dom 𝐺⟶(𝐹 supp ∅)
3938ffvelrni 6509 . . . . . 6 ( dom 𝐺 ∈ dom 𝐺 → (𝐺 dom 𝐺) ∈ (𝐹 supp ∅))
4037, 39syl 17 . . . . 5 (𝜑 → (𝐺 dom 𝐺) ∈ (𝐹 supp ∅))
4120, 40sseldd 3733 . . . 4 (𝜑 → (𝐺 dom 𝐺) ∈ 𝐴)
42 onelon 5897 . . . 4 ((𝐴 ∈ On ∧ (𝐺 dom 𝐺) ∈ 𝐴) → (𝐺 dom 𝐺) ∈ On)
432, 41, 42syl2anc 696 . . 3 (𝜑 → (𝐺 dom 𝐺) ∈ On)
441, 43syl5eqel 2831 . 2 (𝜑𝑊 ∈ On)
45 oecl 7774 . . . . . . 7 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ↑𝑜 𝐴) ∈ On)
466, 2, 45sylancr 698 . . . . . 6 (𝜑 → (ω ↑𝑜 𝐴) ∈ On)
47 onelon 5897 . . . . . 6 (((ω ↑𝑜 𝐴) ∈ On ∧ 𝐵 ∈ (ω ↑𝑜 𝐴)) → 𝐵 ∈ On)
4846, 12, 47syl2anc 696 . . . . 5 (𝜑𝐵 ∈ On)
49 ontri1 5906 . . . . 5 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
506, 48, 49sylancr 698 . . . 4 (𝜑 → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
5132, 50mpbid 222 . . 3 (𝜑 → ¬ 𝐵 ∈ ω)
524fveq2i 6343 . . . . . . . 8 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
53 f1ocnvfv2 6684 . . . . . . . . 9 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴) ∧ 𝐵 ∈ (ω ↑𝑜 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
548, 12, 53syl2anc 696 . . . . . . . 8 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5552, 54syl5eq 2794 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐹) = 𝐵)
5655adantr 472 . . . . . 6 ((𝜑𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) = 𝐵)
576a1i 11 . . . . . . . 8 ((𝜑𝑊 = ∅) → ω ∈ On)
582adantr 472 . . . . . . . 8 ((𝜑𝑊 = ∅) → 𝐴 ∈ On)
5914adantr 472 . . . . . . . 8 ((𝜑𝑊 = ∅) → 𝐹𝑆)
6033a1i 11 . . . . . . . 8 ((𝜑𝑊 = ∅) → ∅ ∈ ω)
61 1on 7724 . . . . . . . . 9 1𝑜 ∈ On
6261a1i 11 . . . . . . . 8 ((𝜑𝑊 = ∅) → 1𝑜 ∈ On)
63 ovexd 6831 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 supp ∅) ∈ V)
645, 7, 2, 22, 14cantnfcl 8725 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
6564simpld 477 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → E We (𝐹 supp ∅))
6622oiiso 8595 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
6763, 65, 66syl2anc 696 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
6867ad2antrr 764 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
69 isof1o 6724 . . . . . . . . . . . . . . . . . 18 (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
7068, 69syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
71 f1ocnv 6298 . . . . . . . . . . . . . . . . 17 (𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) → 𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺)
72 f1of 6286 . . . . . . . . . . . . . . . . 17 (𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺𝐺:(𝐹 supp ∅)⟶dom 𝐺)
7370, 71, 723syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺:(𝐹 supp ∅)⟶dom 𝐺)
74 ffvelrn 6508 . . . . . . . . . . . . . . . 16 ((𝐺:(𝐹 supp ∅)⟶dom 𝐺𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ∈ dom 𝐺)
7573, 74sylancom 704 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ∈ dom 𝐺)
76 elssuni 4607 . . . . . . . . . . . . . . 15 ((𝐺𝑥) ∈ dom 𝐺 → (𝐺𝑥) ⊆ dom 𝐺)
7775, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ⊆ dom 𝐺)
78 onelon 5897 . . . . . . . . . . . . . . . 16 ((dom 𝐺 ∈ On ∧ (𝐺𝑥) ∈ dom 𝐺) → (𝐺𝑥) ∈ On)
7924, 75, 78sylancr 698 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ∈ On)
80 onuni 7146 . . . . . . . . . . . . . . . 16 (dom 𝐺 ∈ On → dom 𝐺 ∈ On)
8124, 80ax-mp 5 . . . . . . . . . . . . . . 15 dom 𝐺 ∈ On
82 ontri1 5906 . . . . . . . . . . . . . . 15 (((𝐺𝑥) ∈ On ∧ dom 𝐺 ∈ On) → ((𝐺𝑥) ⊆ dom 𝐺 ↔ ¬ dom 𝐺 ∈ (𝐺𝑥)))
8379, 81, 82sylancl 697 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ((𝐺𝑥) ⊆ dom 𝐺 ↔ ¬ dom 𝐺 ∈ (𝐺𝑥)))
8477, 83mpbid 222 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ¬ dom 𝐺 ∈ (𝐺𝑥))
8537ad2antrr 764 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → dom 𝐺 ∈ dom 𝐺)
86 isorel 6727 . . . . . . . . . . . . . . . 16 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ ( dom 𝐺 ∈ dom 𝐺 ∧ (𝐺𝑥) ∈ dom 𝐺)) → ( dom 𝐺 E (𝐺𝑥) ↔ (𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥))))
8768, 85, 75, 86syl12anc 1461 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ( dom 𝐺 E (𝐺𝑥) ↔ (𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥))))
88 fvex 6350 . . . . . . . . . . . . . . . 16 (𝐺𝑥) ∈ V
8988epelc 5169 . . . . . . . . . . . . . . 15 ( dom 𝐺 E (𝐺𝑥) ↔ dom 𝐺 ∈ (𝐺𝑥))
901breq1i 4799 . . . . . . . . . . . . . . . 16 (𝑊 E (𝐺‘(𝐺𝑥)) ↔ (𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥)))
91 fvex 6350 . . . . . . . . . . . . . . . . 17 (𝐺‘(𝐺𝑥)) ∈ V
9291epelc 5169 . . . . . . . . . . . . . . . 16 (𝑊 E (𝐺‘(𝐺𝑥)) ↔ 𝑊 ∈ (𝐺‘(𝐺𝑥)))
9390, 92bitr3i 266 . . . . . . . . . . . . . . 15 ((𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥)) ↔ 𝑊 ∈ (𝐺‘(𝐺𝑥)))
9487, 89, 933bitr3g 302 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ( dom 𝐺 ∈ (𝐺𝑥) ↔ 𝑊 ∈ (𝐺‘(𝐺𝑥))))
95 simplr 809 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑊 = ∅)
96 f1ocnvfv2 6684 . . . . . . . . . . . . . . . 16 ((𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝑥)) = 𝑥)
9770, 96sylancom 704 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝑥)) = 𝑥)
9895, 97eleq12d 2821 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝑊 ∈ (𝐺‘(𝐺𝑥)) ↔ ∅ ∈ 𝑥))
9994, 98bitrd 268 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ( dom 𝐺 ∈ (𝐺𝑥) ↔ ∅ ∈ 𝑥))
10084, 99mtbid 313 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ¬ ∅ ∈ 𝑥)
101 onss 7143 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → 𝐴 ⊆ On)
1022, 101syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ On)
10320, 102sstrd 3742 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) ⊆ On)
104103adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑊 = ∅) → (𝐹 supp ∅) ⊆ On)
105104sselda 3732 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 ∈ On)
106 on0eqel 5994 . . . . . . . . . . . . . 14 (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥))
107105, 106syl 17 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝑥 = ∅ ∨ ∅ ∈ 𝑥))
108107ord 391 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (¬ 𝑥 = ∅ → ∅ ∈ 𝑥))
109100, 108mt3d 140 . . . . . . . . . . 11 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 = ∅)
110 el1o 7736 . . . . . . . . . . 11 (𝑥 ∈ 1𝑜𝑥 = ∅)
111109, 110sylibr 224 . . . . . . . . . 10 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 ∈ 1𝑜)
112111ex 449 . . . . . . . . 9 ((𝜑𝑊 = ∅) → (𝑥 ∈ (𝐹 supp ∅) → 𝑥 ∈ 1𝑜))
113112ssrdv 3738 . . . . . . . 8 ((𝜑𝑊 = ∅) → (𝐹 supp ∅) ⊆ 1𝑜)
1145, 57, 58, 59, 60, 62, 113cantnflt2 8731 . . . . . . 7 ((𝜑𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) ∈ (ω ↑𝑜 1𝑜))
115 oe1 7781 . . . . . . . 8 (ω ∈ On → (ω ↑𝑜 1𝑜) = ω)
1166, 115ax-mp 5 . . . . . . 7 (ω ↑𝑜 1𝑜) = ω
117114, 116syl6eleq 2837 . . . . . 6 ((𝜑𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) ∈ ω)
11856, 117eqeltrrd 2828 . . . . 5 ((𝜑𝑊 = ∅) → 𝐵 ∈ ω)
119118ex 449 . . . 4 (𝜑 → (𝑊 = ∅ → 𝐵 ∈ ω))
120119necon3bd 2934 . . 3 (𝜑 → (¬ 𝐵 ∈ ω → 𝑊 ≠ ∅))
12151, 120mpd 15 . 2 (𝜑𝑊 ≠ ∅)
122 dif1o 7737 . 2 (𝑊 ∈ (On ∖ 1𝑜) ↔ (𝑊 ∈ On ∧ 𝑊 ≠ ∅))
12344, 121, 122sylanbrc 701 1 (𝜑𝑊 ∈ (On ∖ 1𝑜))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1620  wcel 2127  wne 2920  Vcvv 3328  cdif 3700  cun 3701  wss 3703  c0 4046   cuni 4576   class class class wbr 4792  cmpt 4869   E cep 5166   We wwe 5212  ccnv 5253  dom cdm 5254  Oncon0 5872  suc csuc 5874  wf 6033  1-1-ontowf1o 6036  cfv 6037   Isom wiso 6038  (class class class)co 6801  cmpt2 6803  ωcom 7218   supp csupp 7451  seq𝜔cseqom 7699  1𝑜c1o 7710   +𝑜 coa 7714   ·𝑜 comu 7715  𝑜 coe 7716   finSupp cfsupp 8428  OrdIsocoi 8567   CNF ccnf 8719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-seqom 7700  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-oexp 7723  df-er 7899  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-oi 8568  df-cnf 8720
This theorem is referenced by:  cnfcom3  8762  cnfcom3clem  8763
  Copyright terms: Public domain W3C validator