MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3clem Structured version   Visualization version   GIF version

Theorem cnfcom3clem 8640
Description: Lemma for cnfcom3c 8641. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.)
Hypotheses
Ref Expression
cnfcom3c.s 𝑆 = dom (ω CNF 𝐴)
cnfcom3c.f 𝐹 = ((ω CNF 𝐴)‘𝑏)
cnfcom3c.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom3c.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
cnfcom3c.t 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom3c.m 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
cnfcom3c.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
cnfcom3c.w 𝑊 = (𝐺 dom 𝐺)
cnfcom3c.x 𝑋 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑𝑜 𝑊) ↦ (((𝐹𝑊) ·𝑜 𝑣) +𝑜 𝑢))
cnfcom3c.y 𝑌 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑢) +𝑜 𝑣))
cnfcom3c.n 𝑁 = ((𝑋𝑌) ∘ (𝑇‘dom 𝐺))
cnfcom3c.l 𝐿 = (𝑏 ∈ (ω ↑𝑜 𝐴) ↦ 𝑁)
Assertion
Ref Expression
cnfcom3clem (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
Distinct variable groups:   𝑔,𝑏,𝑘,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝑢,𝐾,𝑣   𝑔,𝐿,𝑤   𝑥,𝑀   𝑢,𝑇,𝑣,𝑧   𝑓,𝑘,𝑢,𝑣,𝑥,𝑧,𝐹   𝑓,𝐺,𝑘,𝑢,𝑣,𝑥,𝑧   𝑓,𝐻,𝑢,𝑣,𝑥   𝑆,𝑘,𝑧   𝑢,𝑊,𝑣,𝑤,𝑥
Allowed substitution hints:   𝐴(𝑓)   𝑆(𝑥,𝑤,𝑣,𝑢,𝑓,𝑔,𝑏)   𝑇(𝑥,𝑤,𝑓,𝑔,𝑘,𝑏)   𝐹(𝑤,𝑔,𝑏)   𝐺(𝑤,𝑔,𝑏)   𝐻(𝑧,𝑤,𝑔,𝑘,𝑏)   𝐾(𝑥,𝑧,𝑤,𝑓,𝑔,𝑘,𝑏)   𝐿(𝑥,𝑧,𝑣,𝑢,𝑓,𝑘,𝑏)   𝑀(𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑁(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑊(𝑧,𝑓,𝑔,𝑘,𝑏)   𝑋(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑌(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)

Proof of Theorem cnfcom3clem
StepHypRef Expression
1 cnfcom3c.s . . . . . 6 𝑆 = dom (ω CNF 𝐴)
2 simp1 1081 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ∈ On)
3 omelon 8581 . . . . . . . . 9 ω ∈ On
4 1onn 7764 . . . . . . . . 9 1𝑜 ∈ ω
5 ondif2 7627 . . . . . . . . 9 (ω ∈ (On ∖ 2𝑜) ↔ (ω ∈ On ∧ 1𝑜 ∈ ω))
63, 4, 5mpbir2an 975 . . . . . . . 8 ω ∈ (On ∖ 2𝑜)
7 oeworde 7718 . . . . . . . 8 ((ω ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → 𝐴 ⊆ (ω ↑𝑜 𝐴))
86, 2, 7sylancr 696 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ⊆ (ω ↑𝑜 𝐴))
9 simp2 1082 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑏𝐴)
108, 9sseldd 3637 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑏 ∈ (ω ↑𝑜 𝐴))
11 cnfcom3c.f . . . . . 6 𝐹 = ((ω CNF 𝐴)‘𝑏)
12 cnfcom3c.g . . . . . 6 𝐺 = OrdIso( E , (𝐹 supp ∅))
13 cnfcom3c.h . . . . . 6 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
14 cnfcom3c.t . . . . . 6 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
15 cnfcom3c.m . . . . . 6 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
16 cnfcom3c.k . . . . . 6 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
17 cnfcom3c.w . . . . . 6 𝑊 = (𝐺 dom 𝐺)
18 simp3 1083 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ω ⊆ 𝑏)
191, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18cnfcom3lem 8638 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑊 ∈ (On ∖ 1𝑜))
20 cnfcom3c.x . . . . . . 7 𝑋 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑𝑜 𝑊) ↦ (((𝐹𝑊) ·𝑜 𝑣) +𝑜 𝑢))
21 cnfcom3c.y . . . . . . 7 𝑌 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑢) +𝑜 𝑣))
22 cnfcom3c.n . . . . . . 7 𝑁 = ((𝑋𝑌) ∘ (𝑇‘dom 𝐺))
231, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22cnfcom3 8639 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏1-1-onto→(ω ↑𝑜 𝑊))
24 f1of 6175 . . . . . . . . . 10 (𝑁:𝑏1-1-onto→(ω ↑𝑜 𝑊) → 𝑁:𝑏⟶(ω ↑𝑜 𝑊))
2523, 24syl 17 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏⟶(ω ↑𝑜 𝑊))
26 vex 3234 . . . . . . . . 9 𝑏 ∈ V
27 fex 6530 . . . . . . . . 9 ((𝑁:𝑏⟶(ω ↑𝑜 𝑊) ∧ 𝑏 ∈ V) → 𝑁 ∈ V)
2825, 26, 27sylancl 695 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁 ∈ V)
29 cnfcom3c.l . . . . . . . . 9 𝐿 = (𝑏 ∈ (ω ↑𝑜 𝐴) ↦ 𝑁)
3029fvmpt2 6330 . . . . . . . 8 ((𝑏 ∈ (ω ↑𝑜 𝐴) ∧ 𝑁 ∈ V) → (𝐿𝑏) = 𝑁)
3110, 28, 30syl2anc 694 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → (𝐿𝑏) = 𝑁)
32 f1oeq1 6165 . . . . . . 7 ((𝐿𝑏) = 𝑁 → ((𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊) ↔ 𝑁:𝑏1-1-onto→(ω ↑𝑜 𝑊)))
3331, 32syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ((𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊) ↔ 𝑁:𝑏1-1-onto→(ω ↑𝑜 𝑊)))
3423, 33mpbird 247 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → (𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊))
35 oveq2 6698 . . . . . . 7 (𝑤 = 𝑊 → (ω ↑𝑜 𝑤) = (ω ↑𝑜 𝑊))
36 f1oeq3 6167 . . . . . . 7 ((ω ↑𝑜 𝑤) = (ω ↑𝑜 𝑊) → ((𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊)))
3735, 36syl 17 . . . . . 6 (𝑤 = 𝑊 → ((𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊)))
3837rspcev 3340 . . . . 5 ((𝑊 ∈ (On ∖ 1𝑜) ∧ (𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊)) → ∃𝑤 ∈ (On ∖ 1𝑜)(𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))
3919, 34, 38syl2anc 694 . . . 4 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ∃𝑤 ∈ (On ∖ 1𝑜)(𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))
40393expia 1286 . . 3 ((𝐴 ∈ On ∧ 𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
4140ralrimiva 2995 . 2 (𝐴 ∈ On → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
42 ovex 6718 . . . . 5 (ω ↑𝑜 𝐴) ∈ V
4342mptex 6527 . . . 4 (𝑏 ∈ (ω ↑𝑜 𝐴) ↦ 𝑁) ∈ V
4429, 43eqeltri 2726 . . 3 𝐿 ∈ V
45 nfmpt1 4780 . . . . . 6 𝑏(𝑏 ∈ (ω ↑𝑜 𝐴) ↦ 𝑁)
4629, 45nfcxfr 2791 . . . . 5 𝑏𝐿
4746nfeq2 2809 . . . 4 𝑏 𝑔 = 𝐿
48 fveq1 6228 . . . . . . 7 (𝑔 = 𝐿 → (𝑔𝑏) = (𝐿𝑏))
49 f1oeq1 6165 . . . . . . 7 ((𝑔𝑏) = (𝐿𝑏) → ((𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
5048, 49syl 17 . . . . . 6 (𝑔 = 𝐿 → ((𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
5150rexbidv 3081 . . . . 5 (𝑔 = 𝐿 → (∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤) ↔ ∃𝑤 ∈ (On ∖ 1𝑜)(𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
5251imbi2d 329 . . . 4 (𝑔 = 𝐿 → ((ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)) ↔ (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))))
5347, 52ralbid 3012 . . 3 (𝑔 = 𝐿 → (∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)) ↔ ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))))
5444, 53spcev 3331 . 2 (∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝐿𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
5541, 54syl 17 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  cun 3605  wss 3607  c0 3948   cuni 4468  cmpt 4762   E cep 5057  ccnv 5142  dom cdm 5143  ccom 5147  Oncon0 5761  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cmpt2 6692  ωcom 7107   supp csupp 7340  seq𝜔cseqom 7587  1𝑜c1o 7598  2𝑜c2o 7599   +𝑜 coa 7602   ·𝑜 comu 7603  𝑜 coe 7604  OrdIsocoi 8455   CNF ccnf 8596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-seqom 7588  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-oexp 7611  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-cnf 8597
This theorem is referenced by:  cnfcom3c  8641
  Copyright terms: Public domain W3C validator