Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2lem Structured version   Visualization version   GIF version

Theorem cnfcom2lem 8636
 Description: Lemma for cnfcom2 8637. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
cnfcom.t 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom2.1 (𝜑 → ∅ ∈ 𝐵)
Assertion
Ref Expression
cnfcom2lem (𝜑 → dom 𝐺 = suc dom 𝐺)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom2lem
StepHypRef Expression
1 cnfcom2.1 . . . . . 6 (𝜑 → ∅ ∈ 𝐵)
2 n0i 3953 . . . . . 6 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
31, 2syl 17 . . . . 5 (𝜑 → ¬ 𝐵 = ∅)
4 cnfcom.f . . . . . . . . . . . . . 14 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . . . . . . 17 𝑆 = dom (ω CNF 𝐴)
6 omelon 8581 . . . . . . . . . . . . . . . . . 18 ω ∈ On
76a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ω ∈ On)
8 cnfcom.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ On)
95, 7, 8cantnff1o 8631 . . . . . . . . . . . . . . . 16 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴))
10 f1ocnv 6187 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴) → (ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆)
11 f1of 6175 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
129, 10, 113syl 18 . . . . . . . . . . . . . . 15 (𝜑(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
13 cnfcom.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
1412, 13ffvelrnd 6400 . . . . . . . . . . . . . 14 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
154, 14syl5eqel 2734 . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
165, 7, 8cantnfs 8601 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1715, 16mpbid 222 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1817simpld 474 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ω)
1918adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹:𝐴⟶ω)
2019feqmptd 6288 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
21 dif0 3983 . . . . . . . . . . . 12 (𝐴 ∖ ∅) = 𝐴
2221eleq2i 2722 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ ∅) ↔ 𝑥𝐴)
23 simpr 476 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 = ∅)
24 suppssdm 7353 . . . . . . . . . . . . . . . . . . . 20 (𝐹 supp ∅) ⊆ dom 𝐹
25 fdm 6089 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:𝐴⟶ω → dom 𝐹 = 𝐴)
2618, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝐴)
2724, 26syl5sseq 3686 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹 supp ∅) ⊆ 𝐴)
288, 27ssexd 4838 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 supp ∅) ∈ V)
29 cnfcom.g . . . . . . . . . . . . . . . . . . . 20 𝐺 = OrdIso( E , (𝐹 supp ∅))
305, 7, 8, 29, 15cantnfcl 8602 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
3130simpld 474 . . . . . . . . . . . . . . . . . 18 (𝜑 → E We (𝐹 supp ∅))
3229oien 8484 . . . . . . . . . . . . . . . . . 18 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
3328, 31, 32syl2anc 694 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
3433adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 ≈ (𝐹 supp ∅))
3523, 34eqbrtrrd 4709 . . . . . . . . . . . . . . 15 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ≈ (𝐹 supp ∅))
3635ensymd 8048 . . . . . . . . . . . . . 14 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ≈ ∅)
37 en0 8060 . . . . . . . . . . . . . 14 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3836, 37sylib 208 . . . . . . . . . . . . 13 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) = ∅)
39 ss0b 4006 . . . . . . . . . . . . 13 ((𝐹 supp ∅) ⊆ ∅ ↔ (𝐹 supp ∅) = ∅)
4038, 39sylibr 224 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ⊆ ∅)
418adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐴 ∈ On)
42 0ex 4823 . . . . . . . . . . . . 13 ∅ ∈ V
4342a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ∈ V)
4419, 40, 41, 43suppssr 7371 . . . . . . . . . . 11 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥 ∈ (𝐴 ∖ ∅)) → (𝐹𝑥) = ∅)
4522, 44sylan2br 492 . . . . . . . . . 10 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥𝐴) → (𝐹𝑥) = ∅)
4645mpteq2dva 4777 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ ∅))
4720, 46eqtrd 2685 . . . . . . . 8 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ ∅))
48 fconstmpt 5197 . . . . . . . 8 (𝐴 × {∅}) = (𝑥𝐴 ↦ ∅)
4947, 48syl6eqr 2703 . . . . . . 7 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝐴 × {∅}))
5049fveq2d 6233 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘(𝐴 × {∅})))
514fveq2i 6232 . . . . . . . 8 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
52 f1ocnvfv2 6573 . . . . . . . . 9 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴) ∧ 𝐵 ∈ (ω ↑𝑜 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
539, 13, 52syl2anc 694 . . . . . . . 8 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5451, 53syl5eq 2697 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐹) = 𝐵)
5554adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = 𝐵)
56 peano1 7127 . . . . . . . . 9 ∅ ∈ ω
5756a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ ω)
585, 7, 8, 57cantnf0 8610 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
5958adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
6050, 55, 593eqtr3d 2693 . . . . 5 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐵 = ∅)
613, 60mtand 692 . . . 4 (𝜑 → ¬ dom 𝐺 = ∅)
6230simprd 478 . . . . 5 (𝜑 → dom 𝐺 ∈ ω)
63 nnlim 7120 . . . . 5 (dom 𝐺 ∈ ω → ¬ Lim dom 𝐺)
6462, 63syl 17 . . . 4 (𝜑 → ¬ Lim dom 𝐺)
65 ioran 510 . . . 4 (¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺) ↔ (¬ dom 𝐺 = ∅ ∧ ¬ Lim dom 𝐺))
6661, 64, 65sylanbrc 699 . . 3 (𝜑 → ¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
6729oicl 8475 . . . 4 Ord dom 𝐺
68 unizlim 5882 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺)))
6967, 68ax-mp 5 . . 3 (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
7066, 69sylnibr 318 . 2 (𝜑 → ¬ dom 𝐺 = dom 𝐺)
71 orduniorsuc 7072 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
7267, 71mp1i 13 . . 3 (𝜑 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
7372ord 391 . 2 (𝜑 → (¬ dom 𝐺 = dom 𝐺 → dom 𝐺 = suc dom 𝐺))
7470, 73mpd 15 1 (𝜑 → dom 𝐺 = suc dom 𝐺)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030  Vcvv 3231   ∖ cdif 3604   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  {csn 4210  ∪ cuni 4468   class class class wbr 4685   ↦ cmpt 4762   E cep 5057   We wwe 5101   × cxp 5141  ◡ccnv 5142  dom cdm 5143  Ord word 5760  Oncon0 5761  Lim wlim 5762  suc csuc 5763  ⟶wf 5922  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  ωcom 7107   supp csupp 7340  seq𝜔cseqom 7587   +𝑜 coa 7602   ·𝑜 comu 7603   ↑𝑜 coe 7604   ≈ cen 7994   finSupp cfsupp 8316  OrdIsocoi 8455   CNF ccnf 8596 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-seqom 7588  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-oexp 7611  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-cnf 8597 This theorem is referenced by:  cnfcom2  8637  cnfcom3lem  8638  cnfcom3  8639
 Copyright terms: Public domain W3C validator