Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfvval Structured version   Visualization version   GIF version

Theorem cnextfvval 22070
 Description: The value of the continuous extension of a given function 𝐹 at a point 𝑋. (Contributed by Thierry Arnoux, 21-Dec-2017.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
Assertion
Ref Expression
cnextfvval ((𝜑𝑋𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝜑,𝑥

Proof of Theorem cnextfvval
StepHypRef Expression
1 cnextf.3 . . . 4 (𝜑𝐽 ∈ Top)
21adantr 472 . . 3 ((𝜑𝑋𝐶) → 𝐽 ∈ Top)
3 cnextf.4 . . . 4 (𝜑𝐾 ∈ Haus)
43adantr 472 . . 3 ((𝜑𝑋𝐶) → 𝐾 ∈ Haus)
5 cnextf.5 . . . 4 (𝜑𝐹:𝐴𝐵)
65adantr 472 . . 3 ((𝜑𝑋𝐶) → 𝐹:𝐴𝐵)
7 cnextf.a . . . 4 (𝜑𝐴𝐶)
87adantr 472 . . 3 ((𝜑𝑋𝐶) → 𝐴𝐶)
9 cnextf.1 . . . 4 𝐶 = 𝐽
10 cnextf.2 . . . 4 𝐵 = 𝐾
119, 10cnextfun 22069 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
122, 4, 6, 8, 11syl22anc 1478 . 2 ((𝜑𝑋𝐶) → Fun ((𝐽CnExt𝐾)‘𝐹))
13 cnextf.6 . . . . . 6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
1413eleq2d 2825 . . . . 5 (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋𝐶))
1514biimpar 503 . . . 4 ((𝜑𝑋𝐶) → 𝑋 ∈ ((cls‘𝐽)‘𝐴))
16 fvex 6362 . . . . . . 7 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V
1716uniex 7118 . . . . . 6 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V
1817snid 4353 . . . . 5 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)}
19 sneq 4331 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019fveq2d 6356 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋}))
2120oveq1d 6828 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
2221oveq2d 6829 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2322fveq1d 6354 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2423breq1d 4814 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜 ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜))
2524imbi2d 329 . . . . . . . 8 (𝑥 = 𝑋 → ((𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜) ↔ (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)))
263adantr 472 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐾 ∈ Haus)
271adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐽 ∈ Top)
289toptopon 20924 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
2927, 28sylib 208 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐽 ∈ (TopOn‘𝐶))
307adantr 472 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐴𝐶)
31 simpr 479 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑥𝐶)
3213eleq2d 2825 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
3332biimpar 503 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
34 trnei 21897 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3534biimpa 502 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
3629, 30, 31, 33, 35syl31anc 1480 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
375adantr 472 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:𝐴𝐵)
38 cnextf.7 . . . . . . . . . 10 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
3910hausflf2 22003 . . . . . . . . . 10 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)
4026, 36, 37, 38, 39syl31anc 1480 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)
4140expcom 450 . . . . . . . 8 (𝑥𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜))
4225, 41vtoclga 3412 . . . . . . 7 (𝑋𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜))
4342impcom 445 . . . . . 6 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)
44 en1b 8189 . . . . . 6 (((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜 ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)})
4543, 44sylib 208 . . . . 5 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)})
4618, 45syl5eleqr 2846 . . . 4 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
47 nfiu1 4702 . . . . . . . 8 𝑥 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
4847nfel2 2919 . . . . . . 7 𝑥𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
49 nfv 1992 . . . . . . 7 𝑥(𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
5048, 49nfbi 1982 . . . . . 6 𝑥(⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
51 opeq1 4553 . . . . . . . 8 (𝑥 = 𝑋 → ⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ = ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩)
5251eleq1d 2824 . . . . . . 7 (𝑥 = 𝑋 → (⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
53 eleq1 2827 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋 ∈ ((cls‘𝐽)‘𝐴)))
5423eleq2d 2825 . . . . . . . 8 (𝑥 = 𝑋 → ( ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
5553, 54anbi12d 749 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
5652, 55bibi12d 334 . . . . . 6 (𝑥 = 𝑋 → ((⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) ↔ (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))))
57 opeliunxp 5327 . . . . . 6 (⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
5850, 56, 57vtoclg1f 3405 . . . . 5 (𝑋𝐶 → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
5958adantl 473 . . . 4 ((𝜑𝑋𝐶) → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
6015, 46, 59mpbir2and 995 . . 3 ((𝜑𝑋𝐶) → ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
61 df-br 4805 . . . 4 (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
62 haustop 21337 . . . . . . . 8 (𝐾 ∈ Haus → 𝐾 ∈ Top)
633, 62syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
6463adantr 472 . . . . . 6 ((𝜑𝑋𝐶) → 𝐾 ∈ Top)
659, 10cnextfval 22067 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
662, 64, 6, 8, 65syl22anc 1478 . . . . 5 ((𝜑𝑋𝐶) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
6766eleq2d 2825 . . . 4 ((𝜑𝑋𝐶) → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
6861, 67syl5bb 272 . . 3 ((𝜑𝑋𝐶) → (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
6960, 68mpbird 247 . 2 ((𝜑𝑋𝐶) → 𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
70 funbrfv 6395 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
7112, 69, 70sylc 65 1 ((𝜑𝑋𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ⊆ wss 3715  ∅c0 4058  {csn 4321  ⟨cop 4327  ∪ cuni 4588  ∪ ciun 4672   class class class wbr 4804   × cxp 5264  Fun wfun 6043  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  1𝑜c1o 7722   ≈ cen 8118   ↾t crest 16283  Topctop 20900  TopOnctopon 20917  clsccl 21024  neicnei 21103  Hauscha 21314  Filcfil 21850   fLimf cflf 21940  CnExtccnext 22064 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-1o 7729  df-map 8025  df-pm 8026  df-en 8122  df-rest 16285  df-fbas 19945  df-top 20901  df-topon 20918  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-haus 21321  df-fil 21851  df-flim 21944  df-flf 21945  df-cnext 22065 This theorem is referenced by:  cnextcn  22072  cnextfres1  22073
 Copyright terms: Public domain W3C validator