MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextf Structured version   Visualization version   GIF version

Theorem cnextf 21992
Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
Assertion
Ref Expression
cnextf (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnextf.3 . . . 4 (𝜑𝐽 ∈ Top)
2 cnextf.4 . . . 4 (𝜑𝐾 ∈ Haus)
3 cnextf.5 . . . 4 (𝜑𝐹:𝐴𝐵)
4 cnextf.a . . . 4 (𝜑𝐴𝐶)
5 cnextf.1 . . . . 5 𝐶 = 𝐽
6 cnextf.2 . . . . 5 𝐵 = 𝐾
75, 6cnextfun 21990 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
81, 2, 3, 4, 7syl22anc 1440 . . 3 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
9 simpl 474 . . . . . . 7 ((𝜑𝑥𝐶) → 𝜑)
10 cnextf.6 . . . . . . . . 9 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
1110eleq2d 2789 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
1211biimpar 503 . . . . . . 7 ((𝜑𝑥𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
13 cnextf.7 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
14 n0 4039 . . . . . . . 8 (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
1513, 14sylib 208 . . . . . . 7 ((𝜑𝑥𝐶) → ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
16 haustop 21258 . . . . . . . . . . . . . 14 (𝐾 ∈ Haus → 𝐾 ∈ Top)
172, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Top)
185, 6cnextfval 21988 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
191, 17, 3, 4, 18syl22anc 1440 . . . . . . . . . . . 12 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2019eleq2d 2789 . . . . . . . . . . 11 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
21 opeliunxp 5279 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2220, 21syl6bb 276 . . . . . . . . . 10 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
2322exbidv 1963 . . . . . . . . 9 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
24 19.42v 1994 . . . . . . . . 9 (∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2523, 24syl6bb 276 . . . . . . . 8 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
2625biimpar 503 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) → ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
279, 12, 15, 26syl12anc 1437 . . . . . 6 ((𝜑𝑥𝐶) → ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
2825simprbda 654 . . . . . . 7 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
2911adantr 472 . . . . . . 7 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
3028, 29mpbid 222 . . . . . 6 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥𝐶)
3127, 30impbida 913 . . . . 5 (𝜑 → (𝑥𝐶 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)))
3231abbi2dv 2844 . . . 4 (𝜑𝐶 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)})
33 dfdm3 5417 . . . 4 dom ((𝐽CnExt𝐾)‘𝐹) = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)}
3432, 33syl6reqr 2777 . . 3 (𝜑 → dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶)
35 df-fn 6004 . . 3 (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ↔ (Fun ((𝐽CnExt𝐾)‘𝐹) ∧ dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶))
368, 34, 35sylanbrc 701 . 2 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
3719rneqd 5460 . . 3 (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) = ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
38 rniun 5653 . . . 4 ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
39 vex 3307 . . . . . . . . 9 𝑥 ∈ V
4039snnz 4415 . . . . . . . 8 {𝑥} ≠ ∅
41 rnxp 5674 . . . . . . . 8 ({𝑥} ≠ ∅ → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
4240, 41ax-mp 5 . . . . . . 7 ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)
4311biimpa 502 . . . . . . . 8 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥𝐶)
446toptopon 20845 . . . . . . . . . . 11 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
4517, 44sylib 208 . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝐵))
4645adantr 472 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐾 ∈ (TopOn‘𝐵))
475toptopon 20845 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
481, 47sylib 208 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝐶))
4948adantr 472 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐽 ∈ (TopOn‘𝐶))
504adantr 472 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐴𝐶)
51 simpr 479 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥𝐶)
52 trnei 21818 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
5352biimpa 502 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
5449, 50, 51, 12, 53syl31anc 1442 . . . . . . . . 9 ((𝜑𝑥𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
553adantr 472 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐹:𝐴𝐵)
56 flfelbas 21920 . . . . . . . . . . 11 (((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) → 𝑦𝐵)
5756ex 449 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → (𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) → 𝑦𝐵))
5857ssrdv 3715 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
5946, 54, 55, 58syl3anc 1439 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
6043, 59syldan 488 . . . . . . 7 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
6142, 60syl5eqss 3755 . . . . . 6 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6261ralrimiva 3068 . . . . 5 (𝜑 → ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
63 iunss 4669 . . . . 5 ( 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵 ↔ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6462, 63sylibr 224 . . . 4 (𝜑 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6538, 64syl5eqss 3755 . . 3 (𝜑 → ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6637, 65eqsstrd 3745 . 2 (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵)
67 df-f 6005 . 2 (((𝐽CnExt𝐾)‘𝐹):𝐶𝐵 ↔ (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ∧ ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵))
6836, 66, 67sylanbrc 701 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wex 1817  wcel 2103  {cab 2710  wne 2896  wral 3014  wss 3680  c0 4023  {csn 4285  cop 4291   cuni 4544   ciun 4628   × cxp 5216  dom cdm 5218  ran crn 5219  Fun wfun 5995   Fn wfn 5996  wf 5997  cfv 6001  (class class class)co 6765  t crest 16204  Topctop 20821  TopOnctopon 20838  clsccl 20945  neicnei 21024  Hauscha 21235  Filcfil 21771   fLimf cflf 21861  CnExtccnext 21985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-1st 7285  df-2nd 7286  df-map 7976  df-pm 7977  df-rest 16206  df-fbas 19866  df-fg 19867  df-top 20822  df-topon 20839  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-haus 21242  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-cnext 21986
This theorem is referenced by:  cnextcn  21993  cnextfres1  21994
  Copyright terms: Public domain W3C validator