MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex Structured version   Visualization version   GIF version

Theorem cnegex 10255
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cnegex (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10074 . 2 (𝐴 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)))
2 ax-rnegex 10045 . . . . . . 7 (𝑎 ∈ ℝ → ∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0)
3 ax-rnegex 10045 . . . . . . 7 (𝑏 ∈ ℝ → ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0)
42, 3anim12i 589 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
5 reeanv 3136 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) ↔ (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
64, 5sylibr 224 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0))
7 ax-icn 10033 . . . . . . . . . . 11 i ∈ ℂ
87a1i 11 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → i ∈ ℂ)
9 simplrr 818 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℝ)
109recnd 10106 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℂ)
118, 10mulcld 10098 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑑) ∈ ℂ)
12 simplrl 817 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℝ)
1312recnd 10106 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℂ)
1411, 13addcld 10097 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑑) + 𝑐) ∈ ℂ)
15 simplll 813 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℝ)
1615recnd 10106 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℂ)
17 simpllr 815 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℝ)
1817recnd 10106 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℂ)
198, 18mulcld 10098 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑏) ∈ ℂ)
2016, 19, 11addassd 10100 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = (𝑎 + ((i · 𝑏) + (i · 𝑑))))
218, 18, 10adddid 10102 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = ((i · 𝑏) + (i · 𝑑)))
22 simprr 811 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑏 + 𝑑) = 0)
2322oveq2d 6706 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = (i · 0))
24 mul01 10253 . . . . . . . . . . . . . . . 16 (i ∈ ℂ → (i · 0) = 0)
257, 24ax-mp 5 . . . . . . . . . . . . . . 15 (i · 0) = 0
2623, 25syl6eq 2701 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = 0)
2721, 26eqtr3d 2687 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑏) + (i · 𝑑)) = 0)
2827oveq2d 6706 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + ((i · 𝑏) + (i · 𝑑))) = (𝑎 + 0))
29 addid1 10254 . . . . . . . . . . . . 13 (𝑎 ∈ ℂ → (𝑎 + 0) = 𝑎)
3016, 29syl 17 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 0) = 𝑎)
3120, 28, 303eqtrd 2689 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = 𝑎)
3231oveq1d 6705 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = (𝑎 + 𝑐))
3316, 19addcld 10097 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + (i · 𝑏)) ∈ ℂ)
3433, 11, 13addassd 10100 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3532, 34eqtr3d 2687 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
36 simprl 809 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = 0)
3735, 36eqtr3d 2687 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0)
38 oveq2 6698 . . . . . . . . . 10 (𝑥 = ((i · 𝑑) + 𝑐) → ((𝑎 + (i · 𝑏)) + 𝑥) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3938eqeq1d 2653 . . . . . . . . 9 (𝑥 = ((i · 𝑑) + 𝑐) → (((𝑎 + (i · 𝑏)) + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0))
4039rspcev 3340 . . . . . . . 8 ((((i · 𝑑) + 𝑐) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4114, 37, 40syl2anc 694 . . . . . . 7 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4241ex 449 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4342rexlimdvva 3067 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
446, 43mpd 15 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
45 oveq1 6697 . . . . . 6 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 + 𝑥) = ((𝑎 + (i · 𝑏)) + 𝑥))
4645eqeq1d 2653 . . . . 5 (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4746rexbidv 3081 . . . 4 (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4844, 47syl5ibrcom 237 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
4948rexlimivv 3065 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
501, 49syl 17 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wrex 2942  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  ici 9976   + caddc 9977   · cmul 9979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117
This theorem is referenced by:  addid2  10257  addcan2  10259  0cnALT  10308  negeu  10309
  Copyright terms: Public domain W3C validator