![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cndrng | Structured version Visualization version GIF version |
Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cndrng | ⊢ ℂfld ∈ DivRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 19944 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
3 | cnfldmul 19946 | . . . 4 ⊢ · = (.r‘ℂfld) | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
5 | cnfld0 19964 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 0 = (0g‘ℂfld)) |
7 | cnfld1 19965 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → 1 = (1r‘ℂfld)) |
9 | cnring 19962 | . . . 4 ⊢ ℂfld ∈ Ring | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
11 | mulne0 10853 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) | |
12 | 11 | 3adant1 1124 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) |
13 | ax-1ne0 10189 | . . . 4 ⊢ 1 ≠ 0 | |
14 | 13 | a1i 11 | . . 3 ⊢ (⊤ → 1 ≠ 0) |
15 | reccl 10876 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ) | |
16 | 15 | adantl 473 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ) |
17 | recne0 10882 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ≠ 0) | |
18 | 17 | adantl 473 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ≠ 0) |
19 | recid2 10884 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) · 𝑥) = 1) | |
20 | 19 | adantl 473 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · 𝑥) = 1) |
21 | 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 | isdrngd 18966 | . 2 ⊢ (⊤ → ℂfld ∈ DivRing) |
22 | 21 | trud 1634 | 1 ⊢ ℂfld ∈ DivRing |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1624 ⊤wtru 1625 ∈ wcel 2131 ≠ wne 2924 ‘cfv 6041 (class class class)co 6805 ℂcc 10118 0cc0 10120 1c1 10121 · cmul 10125 / cdiv 10868 Basecbs 16051 .rcmulr 16136 0gc0g 16294 1rcur 18693 Ringcrg 18739 DivRingcdr 18941 ℂfldccnfld 19940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-addf 10199 ax-mulf 10200 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-tpos 7513 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-uz 11872 df-fz 12512 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-mulr 16149 df-starv 16150 df-tset 16154 df-ple 16155 df-ds 16158 df-unif 16159 df-0g 16296 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-grp 17618 df-minusg 17619 df-cmn 18387 df-mgp 18682 df-ur 18694 df-ring 18741 df-cring 18742 df-oppr 18815 df-dvdsr 18833 df-unit 18834 df-invr 18864 df-dvr 18875 df-drng 18943 df-cnfld 19941 |
This theorem is referenced by: cnflddiv 19970 cnfldinv 19971 cnsubdrglem 19991 cnmgpabl 20001 cnmsubglem 20003 gzrngunit 20006 zringunit 20030 zringmpg 20034 expghm 20038 psgninv 20122 zrhpsgnmhm 20124 cnstrcvs 23133 cnrlvec 23136 cnrnvc 23150 amgmlem 24907 dchrghm 25172 dchrabs 25176 sum2dchr 25190 lgseisenlem4 25294 xrge0slmod 30145 cnrrext 30355 proot1ex 38273 amgmwlem 43053 amgmlemALT 43054 |
Copyright terms: Public domain | W3C validator |