![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cndis | Structured version Visualization version GIF version |
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cndis | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 5635 | . . . . . . . 8 ⊢ (◡𝑓 “ 𝑥) ⊆ dom 𝑓 | |
2 | fdm 6204 | . . . . . . . . 9 ⊢ (𝑓:𝐴⟶𝑋 → dom 𝑓 = 𝐴) | |
3 | 2 | adantl 473 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → dom 𝑓 = 𝐴) |
4 | 1, 3 | syl5sseq 3786 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ⊆ 𝐴) |
5 | elpw2g 4968 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) | |
6 | 5 | ad2antrr 764 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) |
7 | 4, 6 | mpbird 247 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
8 | 7 | ralrimivw 3097 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
9 | 8 | ex 449 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴)) |
10 | 9 | pm4.71d 669 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
11 | toponmax 20924 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
12 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
13 | elmapg 8028 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝑋 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝑋)) | |
14 | 11, 12, 13 | syl2anr 496 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝑋)) |
15 | distopon 20995 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | |
16 | iscn 21233 | . . . 4 ⊢ ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) | |
17 | 15, 16 | sylan 489 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
18 | 10, 14, 17 | 3bitr4rd 301 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋 ↑𝑚 𝐴))) |
19 | 18 | eqrdv 2750 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 ⊆ wss 3707 𝒫 cpw 4294 ◡ccnv 5257 dom cdm 5258 “ cima 5261 ⟶wf 6037 ‘cfv 6041 (class class class)co 6805 ↑𝑚 cmap 8015 TopOnctopon 20909 Cn ccn 21222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-map 8017 df-top 20893 df-topon 20910 df-cn 21225 |
This theorem is referenced by: xkopt 21652 distgp 22096 symgtgp 22098 |
Copyright terms: Public domain | W3C validator |