Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfshiftioo Structured version   Visualization version   GIF version

Theorem cncfshiftioo 40620
Description: A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfshiftioo.a (𝜑𝐴 ∈ ℝ)
cncfshiftioo.b (𝜑𝐵 ∈ ℝ)
cncfshiftioo.c 𝐶 = (𝐴(,)𝐵)
cncfshiftioo.t (𝜑𝑇 ∈ ℝ)
cncfshiftioo.d 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
cncfshiftioo.f (𝜑𝐹 ∈ (𝐶cn→ℂ))
cncfshiftioo.g 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
Assertion
Ref Expression
cncfshiftioo (𝜑𝐺 ∈ (𝐷cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐺(𝑥)

Proof of Theorem cncfshiftioo
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioosscn 40234 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
21a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
3 cncfshiftioo.t . . . 4 (𝜑𝑇 ∈ ℝ)
43recnd 10274 . . 3 (𝜑𝑇 ∈ ℂ)
5 eqeq1 2775 . . . . . 6 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
65rexbidv 3200 . . . . 5 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
7 oveq1 6803 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
87eqeq2d 2781 . . . . . 6 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
98cbvrexv 3321 . . . . 5 (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇))
106, 9syl6bb 276 . . . 4 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)))
1110cbvrabv 3349 . . 3 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)}
12 cncfshiftioo.f . . . 4 (𝜑𝐹 ∈ (𝐶cn→ℂ))
13 cncfshiftioo.c . . . . 5 𝐶 = (𝐴(,)𝐵)
1413oveq1i 6806 . . . 4 (𝐶cn→ℂ) = ((𝐴(,)𝐵)–cn→ℂ)
1512, 14syl6eleq 2860 . . 3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
16 eqid 2771 . . 3 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇)))
172, 4, 11, 15, 16cncfshift 40602 . 2 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
18 cncfshiftioo.g . . 3 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
19 cncfshiftioo.d . . . . 5 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
20 cncfshiftioo.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
21 cncfshiftioo.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2220, 21, 3iooshift 40264 . . . . 5 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2319, 22syl5eq 2817 . . . 4 (𝜑𝐷 = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2423mpteq1d 4873 . . 3 (𝜑 → (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2518, 24syl5eq 2817 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2623oveq1d 6811 . 2 (𝜑 → (𝐷cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
2717, 25, 263eltr4d 2865 1 (𝜑𝐺 ∈ (𝐷cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wrex 3062  {crab 3065  wss 3723  cmpt 4864  cfv 6030  (class class class)co 6796  cc 10140  cr 10141   + caddc 10145  cmin 10472  (,)cioo 12380  cnccncf 22899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-ioo 12384  df-cncf 22901
This theorem is referenced by:  fourierdlem90  40927
  Copyright terms: Public domain W3C validator