Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfshift Structured version   Visualization version   GIF version

Theorem cncfshift 40582
 Description: A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfshift.a (𝜑𝐴 ⊆ ℂ)
cncfshift.t (𝜑𝑇 ∈ ℂ)
cncfshift.b 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
cncfshift.f (𝜑𝐹 ∈ (𝐴cn→ℂ))
cncfshift.g 𝐺 = (𝑥𝐵 ↦ (𝐹‘(𝑥𝑇)))
Assertion
Ref Expression
cncfshift (𝜑𝐺 ∈ (𝐵cn→ℂ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem cncfshift
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfshift.f . . . . . 6 (𝜑𝐹 ∈ (𝐴cn→ℂ))
2 cncff 22889 . . . . . 6 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
31, 2syl 17 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
43adantr 472 . . . 4 ((𝜑𝑥𝐵) → 𝐹:𝐴⟶ℂ)
5 simpr 479 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥𝐵)
6 cncfshift.b . . . . . . . 8 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
75, 6syl6eleq 2841 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)})
8 rabid 3246 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)))
97, 8sylib 208 . . . . . 6 ((𝜑𝑥𝐵) → (𝑥 ∈ ℂ ∧ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)))
109simprd 482 . . . . 5 ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇))
11 oveq1 6812 . . . . . . . . 9 (𝑥 = (𝑦 + 𝑇) → (𝑥𝑇) = ((𝑦 + 𝑇) − 𝑇))
12113ad2ant3 1129 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → (𝑥𝑇) = ((𝑦 + 𝑇) − 𝑇))
13 cncfshift.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℂ)
1413sselda 3736 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℂ)
15 cncfshift.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
1615adantr 472 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑇 ∈ ℂ)
1714, 16pncand 10577 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((𝑦 + 𝑇) − 𝑇) = 𝑦)
1817adantlr 753 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐴) → ((𝑦 + 𝑇) − 𝑇) = 𝑦)
19183adant3 1126 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → ((𝑦 + 𝑇) − 𝑇) = 𝑦)
2012, 19eqtrd 2786 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → (𝑥𝑇) = 𝑦)
21 simp2 1131 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → 𝑦𝐴)
2220, 21eqeltrd 2831 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → (𝑥𝑇) ∈ 𝐴)
2322rexlimdv3a 3163 . . . . 5 ((𝜑𝑥𝐵) → (∃𝑦𝐴 𝑥 = (𝑦 + 𝑇) → (𝑥𝑇) ∈ 𝐴))
2410, 23mpd 15 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝑇) ∈ 𝐴)
254, 24ffvelrnd 6515 . . 3 ((𝜑𝑥𝐵) → (𝐹‘(𝑥𝑇)) ∈ ℂ)
26 cncfshift.g . . 3 𝐺 = (𝑥𝐵 ↦ (𝐹‘(𝑥𝑇)))
2725, 26fmptd 6540 . 2 (𝜑𝐺:𝐵⟶ℂ)
281adantr 472 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐹 ∈ (𝐴cn→ℂ))
2913adantr 472 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝐴 ⊆ ℂ)
30 ssid 3757 . . . . . . . . . 10 ℂ ⊆ ℂ
31 elcncf 22885 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑎𝐴𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘((𝐹𝑎) − (𝐹𝑏))) < 𝑤))))
3229, 30, 31sylancl 697 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑎𝐴𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘((𝐹𝑎) − (𝐹𝑏))) < 𝑤))))
3328, 32mpbid 222 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝐹:𝐴⟶ℂ ∧ ∀𝑎𝐴𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘((𝐹𝑎) − (𝐹𝑏))) < 𝑤)))
3433simprd 482 . . . . . . 7 ((𝜑𝑥𝐵) → ∀𝑎𝐴𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘((𝐹𝑎) − (𝐹𝑏))) < 𝑤))
35 oveq1 6812 . . . . . . . . . . . . 13 (𝑎 = (𝑥𝑇) → (𝑎𝑏) = ((𝑥𝑇) − 𝑏))
3635fveq2d 6348 . . . . . . . . . . . 12 (𝑎 = (𝑥𝑇) → (abs‘(𝑎𝑏)) = (abs‘((𝑥𝑇) − 𝑏)))
3736breq1d 4806 . . . . . . . . . . 11 (𝑎 = (𝑥𝑇) → ((abs‘(𝑎𝑏)) < 𝑧 ↔ (abs‘((𝑥𝑇) − 𝑏)) < 𝑧))
38 fveq2 6344 . . . . . . . . . . . . . 14 (𝑎 = (𝑥𝑇) → (𝐹𝑎) = (𝐹‘(𝑥𝑇)))
3938oveq1d 6820 . . . . . . . . . . . . 13 (𝑎 = (𝑥𝑇) → ((𝐹𝑎) − (𝐹𝑏)) = ((𝐹‘(𝑥𝑇)) − (𝐹𝑏)))
4039fveq2d 6348 . . . . . . . . . . . 12 (𝑎 = (𝑥𝑇) → (abs‘((𝐹𝑎) − (𝐹𝑏))) = (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))))
4140breq1d 4806 . . . . . . . . . . 11 (𝑎 = (𝑥𝑇) → ((abs‘((𝐹𝑎) − (𝐹𝑏))) < 𝑤 ↔ (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤))
4237, 41imbi12d 333 . . . . . . . . . 10 (𝑎 = (𝑥𝑇) → (((abs‘(𝑎𝑏)) < 𝑧 → (abs‘((𝐹𝑎) − (𝐹𝑏))) < 𝑤) ↔ ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)))
4342rexralbidv 3188 . . . . . . . . 9 (𝑎 = (𝑥𝑇) → (∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘((𝐹𝑎) − (𝐹𝑏))) < 𝑤) ↔ ∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)))
4443ralbidv 3116 . . . . . . . 8 (𝑎 = (𝑥𝑇) → (∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘((𝐹𝑎) − (𝐹𝑏))) < 𝑤) ↔ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)))
4544rspcva 3439 . . . . . . 7 (((𝑥𝑇) ∈ 𝐴 ∧ ∀𝑎𝐴𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘((𝐹𝑎) − (𝐹𝑏))) < 𝑤)) → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤))
4624, 34, 45syl2anc 696 . . . . . 6 ((𝜑𝑥𝐵) → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤))
4746adantrr 755 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤))
48 simprr 813 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → 𝑤 ∈ ℝ+)
49 rspa 3060 . . . . 5 ((∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤) ∧ 𝑤 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤))
5047, 48, 49syl2anc 696 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤))
51 simpl1l 1276 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) → 𝜑)
5251adantr 472 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → 𝜑)
53 simp1rl 1302 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) → 𝑥𝐵)
5453ad2antrr 764 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → 𝑥𝐵)
55 simplr 809 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → 𝑣𝐵)
5626fvmpt2 6445 . . . . . . . . . . . . . 14 ((𝑥𝐵 ∧ (𝐹‘(𝑥𝑇)) ∈ ℂ) → (𝐺𝑥) = (𝐹‘(𝑥𝑇)))
575, 25, 56syl2anc 696 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐹‘(𝑥𝑇)))
58573adant3 1126 . . . . . . . . . . . 12 ((𝜑𝑥𝐵𝑣𝐵) → (𝐺𝑥) = (𝐹‘(𝑥𝑇)))
5926a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐵) → 𝐺 = (𝑥𝐵 ↦ (𝐹‘(𝑥𝑇))))
60 oveq1 6812 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (𝑥𝑇) = (𝑣𝑇))
6160fveq2d 6348 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (𝐹‘(𝑥𝑇)) = (𝐹‘(𝑣𝑇)))
6261adantl 473 . . . . . . . . . . . . . 14 (((𝜑𝑣𝐵) ∧ 𝑥 = 𝑣) → (𝐹‘(𝑥𝑇)) = (𝐹‘(𝑣𝑇)))
63 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐵) → 𝑣𝐵)
643adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐵) → 𝐹:𝐴⟶ℂ)
65 eleq1w 2814 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝑥𝐵𝑣𝐵))
6665anbi2d 742 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → ((𝜑𝑥𝐵) ↔ (𝜑𝑣𝐵)))
6760eleq1d 2816 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → ((𝑥𝑇) ∈ 𝐴 ↔ (𝑣𝑇) ∈ 𝐴))
6866, 67imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (((𝜑𝑥𝐵) → (𝑥𝑇) ∈ 𝐴) ↔ ((𝜑𝑣𝐵) → (𝑣𝑇) ∈ 𝐴)))
6968, 24chvarv 2400 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐵) → (𝑣𝑇) ∈ 𝐴)
7064, 69ffvelrnd 6515 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐵) → (𝐹‘(𝑣𝑇)) ∈ ℂ)
7159, 62, 63, 70fvmptd 6442 . . . . . . . . . . . . 13 ((𝜑𝑣𝐵) → (𝐺𝑣) = (𝐹‘(𝑣𝑇)))
72713adant2 1125 . . . . . . . . . . . 12 ((𝜑𝑥𝐵𝑣𝐵) → (𝐺𝑣) = (𝐹‘(𝑣𝑇)))
7358, 72oveq12d 6823 . . . . . . . . . . 11 ((𝜑𝑥𝐵𝑣𝐵) → ((𝐺𝑥) − (𝐺𝑣)) = ((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇))))
7473fveq2d 6348 . . . . . . . . . 10 ((𝜑𝑥𝐵𝑣𝐵) → (abs‘((𝐺𝑥) − (𝐺𝑣))) = (abs‘((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇)))))
7552, 54, 55, 74syl3anc 1473 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘((𝐺𝑥) − (𝐺𝑣))) = (abs‘((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇)))))
7652, 54, 55jca31 558 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → ((𝜑𝑥𝐵) ∧ 𝑣𝐵))
77 simpr 479 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘(𝑥𝑣)) < 𝑧)
789simpld 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → 𝑥 ∈ ℂ)
7978adantr 472 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → 𝑥 ∈ ℂ)
80 ssrab2 3820 . . . . . . . . . . . . . . . . . 18 {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)} ⊆ ℂ
816, 80eqsstri 3768 . . . . . . . . . . . . . . . . 17 𝐵 ⊆ ℂ
8281sseli 3732 . . . . . . . . . . . . . . . 16 (𝑣𝐵𝑣 ∈ ℂ)
8382adantl 473 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → 𝑣 ∈ ℂ)
8415ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → 𝑇 ∈ ℂ)
8579, 83, 84nnncan2d 10611 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → ((𝑥𝑇) − (𝑣𝑇)) = (𝑥𝑣))
8685fveq2d 6348 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → (abs‘((𝑥𝑇) − (𝑣𝑇))) = (abs‘(𝑥𝑣)))
8786adantr 472 . . . . . . . . . . . 12 ((((𝜑𝑥𝐵) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘((𝑥𝑇) − (𝑣𝑇))) = (abs‘(𝑥𝑣)))
88 simpr 479 . . . . . . . . . . . 12 ((((𝜑𝑥𝐵) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘(𝑥𝑣)) < 𝑧)
8987, 88eqbrtrd 4818 . . . . . . . . . . 11 ((((𝜑𝑥𝐵) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧)
9076, 77, 89syl2anc 696 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧)
9152, 55, 69syl2anc 696 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (𝑣𝑇) ∈ 𝐴)
92 simpll3 1256 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤))
93 oveq2 6813 . . . . . . . . . . . . . . 15 (𝑏 = (𝑣𝑇) → ((𝑥𝑇) − 𝑏) = ((𝑥𝑇) − (𝑣𝑇)))
9493fveq2d 6348 . . . . . . . . . . . . . 14 (𝑏 = (𝑣𝑇) → (abs‘((𝑥𝑇) − 𝑏)) = (abs‘((𝑥𝑇) − (𝑣𝑇))))
9594breq1d 4806 . . . . . . . . . . . . 13 (𝑏 = (𝑣𝑇) → ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 ↔ (abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧))
96 fveq2 6344 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑣𝑇) → (𝐹𝑏) = (𝐹‘(𝑣𝑇)))
9796oveq2d 6821 . . . . . . . . . . . . . . 15 (𝑏 = (𝑣𝑇) → ((𝐹‘(𝑥𝑇)) − (𝐹𝑏)) = ((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇))))
9897fveq2d 6348 . . . . . . . . . . . . . 14 (𝑏 = (𝑣𝑇) → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) = (abs‘((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇)))))
9998breq1d 4806 . . . . . . . . . . . . 13 (𝑏 = (𝑣𝑇) → ((abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤 ↔ (abs‘((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇)))) < 𝑤))
10095, 99imbi12d 333 . . . . . . . . . . . 12 (𝑏 = (𝑣𝑇) → (((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤) ↔ ((abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇)))) < 𝑤)))
101100rspcva 3439 . . . . . . . . . . 11 (((𝑣𝑇) ∈ 𝐴 ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) → ((abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇)))) < 𝑤))
10291, 92, 101syl2anc 696 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → ((abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇)))) < 𝑤))
10390, 102mpd 15 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹‘(𝑣𝑇)))) < 𝑤)
10475, 103eqbrtrd 4818 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤)
105104ex 449 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) ∧ 𝑣𝐵) → ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤))
106105ralrimiva 3096 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤)) → ∀𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤))
1071063exp 1112 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → (𝑧 ∈ ℝ+ → (∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤) → ∀𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤))))
108107reximdvai 3145 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → (∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘((𝐹‘(𝑥𝑇)) − (𝐹𝑏))) < 𝑤) → ∃𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤)))
10950, 108mpd 15 . . 3 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤))
110109ralrimivva 3101 . 2 (𝜑 → ∀𝑥𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤))
11181a1i 11 . . . 4 (𝜑𝐵 ⊆ ℂ)
112 elcncf 22885 . . . 4 ((𝐵 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ (𝐵cn→ℂ) ↔ (𝐺:𝐵⟶ℂ ∧ ∀𝑎𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤))))
113111, 30, 112sylancl 697 . . 3 (𝜑 → (𝐺 ∈ (𝐵cn→ℂ) ↔ (𝐺:𝐵⟶ℂ ∧ ∀𝑎𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤))))
114 nfcv 2894 . . . . . . 7 𝑥+
115 nfcv 2894 . . . . . . . . 9 𝑥𝐵
116 nfv 1984 . . . . . . . . . 10 𝑥(abs‘(𝑎𝑣)) < 𝑧
117 nfcv 2894 . . . . . . . . . . . 12 𝑥abs
118 nfmpt1 4891 . . . . . . . . . . . . . . 15 𝑥(𝑥𝐵 ↦ (𝐹‘(𝑥𝑇)))
11926, 118nfcxfr 2892 . . . . . . . . . . . . . 14 𝑥𝐺
120 nfcv 2894 . . . . . . . . . . . . . 14 𝑥𝑎
121119, 120nffv 6351 . . . . . . . . . . . . 13 𝑥(𝐺𝑎)
122 nfcv 2894 . . . . . . . . . . . . 13 𝑥
123 nfcv 2894 . . . . . . . . . . . . . 14 𝑥𝑣
124119, 123nffv 6351 . . . . . . . . . . . . 13 𝑥(𝐺𝑣)
125121, 122, 124nfov 6831 . . . . . . . . . . . 12 𝑥((𝐺𝑎) − (𝐺𝑣))
126117, 125nffv 6351 . . . . . . . . . . 11 𝑥(abs‘((𝐺𝑎) − (𝐺𝑣)))
127 nfcv 2894 . . . . . . . . . . 11 𝑥 <
128 nfcv 2894 . . . . . . . . . . 11 𝑥𝑤
129126, 127, 128nfbr 4843 . . . . . . . . . 10 𝑥(abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤
130116, 129nfim 1966 . . . . . . . . 9 𝑥((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤)
131115, 130nfral 3075 . . . . . . . 8 𝑥𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤)
132114, 131nfrex 3137 . . . . . . 7 𝑥𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤)
133114, 132nfral 3075 . . . . . 6 𝑥𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤)
134 nfv 1984 . . . . . 6 𝑎𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤)
135 oveq1 6812 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎𝑣) = (𝑥𝑣))
136135fveq2d 6348 . . . . . . . . . 10 (𝑎 = 𝑥 → (abs‘(𝑎𝑣)) = (abs‘(𝑥𝑣)))
137136breq1d 4806 . . . . . . . . 9 (𝑎 = 𝑥 → ((abs‘(𝑎𝑣)) < 𝑧 ↔ (abs‘(𝑥𝑣)) < 𝑧))
138 fveq2 6344 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐺𝑎) = (𝐺𝑥))
139138oveq1d 6820 . . . . . . . . . . 11 (𝑎 = 𝑥 → ((𝐺𝑎) − (𝐺𝑣)) = ((𝐺𝑥) − (𝐺𝑣)))
140139fveq2d 6348 . . . . . . . . . 10 (𝑎 = 𝑥 → (abs‘((𝐺𝑎) − (𝐺𝑣))) = (abs‘((𝐺𝑥) − (𝐺𝑣))))
141140breq1d 4806 . . . . . . . . 9 (𝑎 = 𝑥 → ((abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤 ↔ (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤))
142137, 141imbi12d 333 . . . . . . . 8 (𝑎 = 𝑥 → (((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤) ↔ ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤)))
143142rexralbidv 3188 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤) ↔ ∃𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤)))
144143ralbidv 3116 . . . . . 6 (𝑎 = 𝑥 → (∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤) ↔ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤)))
145133, 134, 144cbvral 3298 . . . . 5 (∀𝑎𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤) ↔ ∀𝑥𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤))
146145bicomi 214 . . . 4 (∀𝑥𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤) ↔ ∀𝑎𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤))
147146anbi2i 732 . . 3 ((𝐺:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤)) ↔ (𝐺:𝐵⟶ℂ ∧ ∀𝑎𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑎𝑣)) < 𝑧 → (abs‘((𝐺𝑎) − (𝐺𝑣))) < 𝑤)))
148113, 147syl6bbr 278 . 2 (𝜑 → (𝐺 ∈ (𝐵cn→ℂ) ↔ (𝐺:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘((𝐺𝑥) − (𝐺𝑣))) < 𝑤))))
14927, 110, 148mpbir2and 995 1 (𝜑𝐺 ∈ (𝐵cn→ℂ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1624   ∈ wcel 2131  ∀wral 3042  ∃wrex 3043  {crab 3046   ⊆ wss 3707   class class class wbr 4796   ↦ cmpt 4873  ⟶wf 6037  ‘cfv 6041  (class class class)co 6805  ℂcc 10118   + caddc 10123   < clt 10258   − cmin 10450  ℝ+crp 12017  abscabs 14165  –cn→ccncf 22872 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-po 5179  df-so 5180  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-ltxr 10263  df-sub 10452  df-cncf 22874 This theorem is referenced by:  cncfshiftioo  40600  itgiccshift  40691  fourierdlem92  40910
 Copyright terms: Public domain W3C validator