![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfmpt2f | Structured version Visualization version GIF version |
Description: Composition of continuous functions. –cn→ analogue of cnmpt12f 21691. (Contributed by Mario Carneiro, 3-Sep-2014.) |
Ref | Expression |
---|---|
cncfmpt2f.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
cncfmpt2f.2 | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
cncfmpt2f.3 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
cncfmpt2f.4 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
Ref | Expression |
---|---|
cncfmpt2f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmpt2f.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
2 | 1 | cnfldtopon 22807 | . . . 4 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
3 | cncfmpt2f.3 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
4 | cncfrss 22915 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → 𝑋 ⊆ ℂ) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
6 | resttopon 21187 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐽 ↾t 𝑋) ∈ (TopOn‘𝑋)) | |
7 | 2, 5, 6 | sylancr 698 | . . 3 ⊢ (𝜑 → (𝐽 ↾t 𝑋) ∈ (TopOn‘𝑋)) |
8 | ssid 3765 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
9 | eqid 2760 | . . . . . 6 ⊢ (𝐽 ↾t 𝑋) = (𝐽 ↾t 𝑋) | |
10 | 2 | toponunii 20943 | . . . . . . . . 9 ⊢ ℂ = ∪ 𝐽 |
11 | 10 | restid 16316 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘ℂ) → (𝐽 ↾t ℂ) = 𝐽) |
12 | 2, 11 | ax-mp 5 | . . . . . . 7 ⊢ (𝐽 ↾t ℂ) = 𝐽 |
13 | 12 | eqcomi 2769 | . . . . . 6 ⊢ 𝐽 = (𝐽 ↾t ℂ) |
14 | 1, 9, 13 | cncfcn 22933 | . . . . 5 ⊢ ((𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋–cn→ℂ) = ((𝐽 ↾t 𝑋) Cn 𝐽)) |
15 | 5, 8, 14 | sylancl 697 | . . . 4 ⊢ (𝜑 → (𝑋–cn→ℂ) = ((𝐽 ↾t 𝑋) Cn 𝐽)) |
16 | 3, 15 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 ↾t 𝑋) Cn 𝐽)) |
17 | cncfmpt2f.4 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) | |
18 | 17, 15 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 ↾t 𝑋) Cn 𝐽)) |
19 | cncfmpt2f.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | |
20 | 7, 16, 18, 19 | cnmpt12f 21691 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ↾t 𝑋) Cn 𝐽)) |
21 | 20, 15 | eleqtrrd 2842 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ↦ cmpt 4881 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 ↾t crest 16303 TopOpenctopn 16304 ℂfldccnfld 19968 TopOnctopon 20937 Cn ccn 21250 ×t ctx 21585 –cn→ccncf 22900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fi 8484 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-fz 12540 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-plusg 16176 df-mulr 16177 df-starv 16178 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-rest 16305 df-topn 16306 df-topgen 16326 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-cnfld 19969 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-cn 21253 df-cnp 21254 df-tx 21587 df-xms 22346 df-ms 22347 df-cncf 22902 |
This theorem is referenced by: cncfmpt2ss 22939 addccncf 22940 negcncf 22942 mulcncf 23435 dvcnp2 23902 dvlipcn 23976 dvfsumabs 24005 ftc2 24026 itgparts 24029 taylthlem2 24347 sincn 24417 coscn 24418 logcn 24613 loglesqrt 24719 lgamgulmlem2 24976 pntlem3 25518 logdivsqrle 31058 ftc1cnnclem 33814 ftc2nc 33825 areacirclem4 33834 sub1cncf 33891 sub2cncf 33892 areaquad 38322 subcncf 40603 addcncf 40607 |
Copyright terms: Public domain | W3C validator |