MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcn Structured version   Visualization version   GIF version

Theorem cncfcn 22932
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cncfcn.2 𝐽 = (TopOpen‘ℂfld)
cncfcn.3 𝐾 = (𝐽t 𝐴)
cncfcn.4 𝐿 = (𝐽t 𝐵)
Assertion
Ref Expression
cncfcn ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))

Proof of Theorem cncfcn
StepHypRef Expression
1 eqid 2771 . . 3 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
2 eqid 2771 . . 3 ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
3 eqid 2771 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
4 eqid 2771 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))
51, 2, 3, 4cncfmet 22931 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
6 cncfcn.3 . . . 4 𝐾 = (𝐽t 𝐴)
7 cnxmet 22796 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
8 simpl 468 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ)
9 cncfcn.2 . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
109cnfldtopn 22805 . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
111, 10, 3metrest 22549 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
127, 8, 11sylancr 575 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
136, 12syl5eq 2817 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
14 cncfcn.4 . . . 4 𝐿 = (𝐽t 𝐵)
15 simpr 471 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ)
162, 10, 4metrest 22549 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
177, 15, 16sylancr 575 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1814, 17syl5eq 2817 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1913, 18oveq12d 6814 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
205, 19eqtr4d 2808 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wss 3723   × cxp 5248  cres 5252  ccom 5254  cfv 6030  (class class class)co 6796  cc 10140  cmin 10472  abscabs 14182  t crest 16289  TopOpenctopn 16290  ∞Metcxmt 19946  MetOpencmopn 19951  fldccnfld 19961   Cn ccn 21249  cnccncf 22899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-rest 16291  df-topn 16292  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-bases 20971  df-cn 21252  df-cnp 21253  df-cncf 22901
This theorem is referenced by:  cncfcn1  22933  cncfmptc  22934  cncfmptid  22935  cncfmpt2f  22937  cdivcncf  22940  abscncfALT  22943  cncfcnvcn  22944  cnrehmeo  22972  cncombf  23645  cnmbf  23646  cnlimc  23872  dvcn  23904  dvcnvrelem2  24001  dvcnvre  24002  ftc1cn  24026  psercn  24400  abelth  24415  logcn  24614  dvloglem  24615  efopnlem2  24624  cxpcn  24707  resqrtcn  24711  sqrtcn  24712  loglesqrt  24720  ftalem3  25022  cxpcncf1  31013  ivthALT  32667  knoppcnlem10  32829  knoppcnlem11  32830  ftc1cnnc  33816  areacirclem2  33833  areacirclem4  33835  fsumcncf  40606  ioccncflimc  40613  cncfuni  40614  icocncflimc  40617  cncfdmsn  40618  cncfiooicclem1  40621  cncfiooicc  40622  cxpcncf2  40628  itgsubsticclem  40705  dirkercncflem2  40835  dirkercncflem4  40837  dirkercncf  40838  fourierdlem32  40870  fourierdlem33  40871  fourierdlem62  40899  fourierdlem93  40930  fourierdlem101  40938  fouriercn  40963
  Copyright terms: Public domain W3C validator