![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnaddid | Structured version Visualization version GIF version |
Description: The group identity element of complex number addition is zero. See also cnfld0 19985. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnaddabl.g | ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} |
Ref | Expression |
---|---|
cnaddid | ⊢ (0g‘𝐺) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10238 | . . 3 ⊢ 0 ∈ ℂ | |
2 | cnex 10223 | . . . . 5 ⊢ ℂ ∈ V | |
3 | cnaddabl.g | . . . . . 6 ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} | |
4 | 3 | grpbase 16199 | . . . . 5 ⊢ (ℂ ∈ V → ℂ = (Base‘𝐺)) |
5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ ℂ = (Base‘𝐺) |
6 | eqid 2771 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
7 | addex 12033 | . . . . 5 ⊢ + ∈ V | |
8 | 3 | grpplusg 16200 | . . . . 5 ⊢ ( + ∈ V → + = (+g‘𝐺)) |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ + = (+g‘𝐺) |
10 | id 22 | . . . 4 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
11 | addid2 10425 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
12 | 11 | adantl 467 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
13 | addid1 10422 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 + 0) = 𝑥) | |
14 | 13 | adantl 467 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥) |
15 | 5, 6, 9, 10, 12, 14 | ismgmid2 17475 | . . 3 ⊢ (0 ∈ ℂ → 0 = (0g‘𝐺)) |
16 | 1, 15 | ax-mp 5 | . 2 ⊢ 0 = (0g‘𝐺) |
17 | 16 | eqcomi 2780 | 1 ⊢ (0g‘𝐺) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 Vcvv 3351 {cpr 4319 〈cop 4323 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 0cc0 10142 + caddc 10145 ndxcnx 16061 Basecbs 16064 +gcplusg 16149 0gc0g 16308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-addf 10221 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-0g 16310 |
This theorem is referenced by: cnaddinv 18481 |
Copyright terms: Public domain | W3C validator |