MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddid Structured version   Visualization version   GIF version

Theorem cnaddid 18480
Description: The group identity element of complex number addition is zero. See also cnfld0 19985. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnaddabl.g 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
cnaddid (0g𝐺) = 0

Proof of Theorem cnaddid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0cn 10238 . . 3 0 ∈ ℂ
2 cnex 10223 . . . . 5 ℂ ∈ V
3 cnaddabl.g . . . . . 6 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
43grpbase 16199 . . . . 5 (ℂ ∈ V → ℂ = (Base‘𝐺))
52, 4ax-mp 5 . . . 4 ℂ = (Base‘𝐺)
6 eqid 2771 . . . 4 (0g𝐺) = (0g𝐺)
7 addex 12033 . . . . 5 + ∈ V
83grpplusg 16200 . . . . 5 ( + ∈ V → + = (+g𝐺))
97, 8ax-mp 5 . . . 4 + = (+g𝐺)
10 id 22 . . . 4 (0 ∈ ℂ → 0 ∈ ℂ)
11 addid2 10425 . . . . 5 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
1211adantl 467 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
13 addid1 10422 . . . . 5 (𝑥 ∈ ℂ → (𝑥 + 0) = 𝑥)
1413adantl 467 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
155, 6, 9, 10, 12, 14ismgmid2 17475 . . 3 (0 ∈ ℂ → 0 = (0g𝐺))
161, 15ax-mp 5 . 2 0 = (0g𝐺)
1716eqcomi 2780 1 (0g𝐺) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  Vcvv 3351  {cpr 4319  cop 4323  cfv 6030  (class class class)co 6796  cc 10140  0cc0 10142   + caddc 10145  ndxcnx 16061  Basecbs 16064  +gcplusg 16149  0gc0g 16308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-addf 10221
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-0g 16310
This theorem is referenced by:  cnaddinv  18481
  Copyright terms: Public domain W3C validator