Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddablx Structured version   Visualization version   GIF version

 Description: The complex numbers are an Abelian group under addition. This version of cnaddabl 18479 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 18479 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.)
Hypothesis
Ref Expression
cnaddablx.g 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
Assertion
Ref Expression

Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 10219 . . 3 ℂ ∈ V
2 addex 12033 . . 3 + ∈ V
3 cnaddablx.g . . 3 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
4 addcl 10220 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5 addass 10225 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
6 0cn 10234 . . 3 0 ∈ ℂ
7 addid2 10421 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
8 negcl 10483 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 addcom 10424 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
108, 9mpdan 667 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
11 negid 10530 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1210, 11eqtr3d 2807 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
131, 2, 3, 4, 5, 6, 7, 8, 12isgrpix 17657 . 2 𝐺 ∈ Grp
141, 2, 3grpbasex 16202 . 2 ℂ = (Base‘𝐺)
151, 2, 3grpplusgx 16203 . 2 + = (+g𝐺)
16 addcom 10424 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1713, 14, 15, 16isabli 18414 1 𝐺 ∈ Abel
 Colors of variables: wff setvar class Syntax hints:   = wceq 1631   ∈ wcel 2145  {cpr 4318  ⟨cop 4322  (class class class)co 6793  ℂcc 10136  0cc0 10138  1c1 10139   + caddc 10141  -cneg 10469  2c2 11272  Abelcabl 18401 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-addf 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-cmn 18402  df-abl 18403 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator